

<u>Toshihiko Ito</u>, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Contents

- Background
- Conventional common-gate topologies
- Proposed LNA
- Simulation and measurement results
- Conclusion

Necessity of multi standard

- Several RFICs are required for each wireless communication standard.
- To improve this situation, SDR is proposed.

2

Requirements for SAW-less receiver 3

- •Assuming that on chip notch filter is 'used instead of SAW filters.
- •When Tx leak=-30dBm and CW blocker=-60dBm, requirements for components are calculated as follows.

4 PUKYD TIECH Pursuing Excellence

- Resistive feedback LNA
 - -High gain, low noise
 - -Large power
- Common-gate LNA
 - -High linearity, low power
 - –Lower gain, higher noise than resistive feedback LNA

Common-gate topology is employed.

Fundamental common-gate LNA

- g_m of the common-gate transistor is fixed due to the input impedance matching.
- NF cannot be improved due to fixed g_m.

5

Capacitive-Cross-Couple LNA

- This topology achieves a lower noise factor than that of fundamental one.
- However, g_m and noise of common-gate transistor are still fixed.

[1] W. Zhuo, et al. ESSCIRC, 2000.

- The proposed LNA employs capacitivecross-couple technique and capacitive feedback.
- g_m can be enlarged, NF can be improved.

- Calculated NFs of CCC LNA and capacitive feedback LNA are compared.
- The larger C is, the lower NF is.

& Okada Lab.

- The larger C is, the larger but less flatness of voltage gain is.
- Simulated result is less flat than calculated one.

LNA schematic including buffer

- External chip inductors are used.
- C_P is implemented by ESD diode.
- The source follower buffer is connected

Chip and PCB photo

- 11 TOKYOTIECH Pursuing Excellence
- Nodes of photographs below correspond to each other.
- Core size is 0.066mm²

Measured S parameters

• $S_{11} < -5$ dB and $S_{22} < -10$ dB @ 0.8-1.8GHz

12

Pursuina Excellence

- Maximum power gain is 13.4dB.
- These are calculated from 4-port S-para.

- Measured NF is 2.7dB.
- This result is much higher than simulated one.

Parasitic elements of wire and TL 14

- Transmission line of PCB and parasitic of bonding wire model is made.
- Inductor coupling is also considered.

- Measured and simulated with parasitic model NFs are compared.
- Simulation result using parasitic model is similar to the measured result.

Performance evaluation

- Simulation results achieve targets and NF is lower than 2dB.
- Measured results can be improved in consideration with the parasitics.

	Goal	This work	[2]
Freq. [GHz]	0.8-2.6	0.8-1.8	0.3-0.92
Gain [dB]	15	13.4	21
NF [dB]	2.2	2.7	2
llP3 [dBm]	-6	-7	-3.2
P _{dc} [mW]	-	6.5	3.6

[2]S.Woo, et al. ISSCC 2009

- The wideband low noise amplifier with capacitive feedback is proposed.
- The capacitive feedback adds more flexibility in g_m and NF can be theoretically improved.
- Measured and simulated NFs are much different from each other.
- That can be improved in consideration with the parasitic components.

Thank you for your attention!

