Pursuing Excellence

Two-Stage Band-Selectable CMOS Power Amplifier

JeeYoung Hong, Daisuke Imanishi, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

TDKYD TIECH PursuingExcellence

Introduction

- PA design
- Measurement results

Conclusion

Single chip transceiver is demanded because of its low cost and downsizing.

Various wireless applications

Various wireless communication standards

A broad band device (PA) is necessary to support various wireless applications.

3

DTECH PursuingExcellence

ΓΠΚ

Conventional wideband PA

Distributed power amplifier

Wideband input / output matching
 Possibility of intermodulation

Lack of the optimum impedance matching Insufficient output power

Many inductor Large area

ΓΠΚ

Target of proposed PA

Large output power

- High supply voltage
- Differential topology
- 2-stage configuration
- Transformer

Band-selection

ΓΠΚ

2nd stage

Pursuing Excellence

Change of impedance matching

Schematic

Class-A bias(1st stage), Class-AB bias(2nd stage)

6

ΤΕΓΗ **Pursuing Excellence**

ΓΟΚ

Consideration for voltage stress

- Cascode topology with thick gate-oxide transistor
- Self-biased cascode: technique that allows RF swings at the common gate transistor. [1] T. Sowlati et al., JSSC 2003.

Pursuina Excellence

- \odot Reduction of voltage V_{qd}
- OPREVENTION OF TRANSISTOR'S ENTERING TO TRIODE REGION

To get a sufficient gain practically a 2-stage configuration

To transfer power from the 1st stage to the 2nd stage a complex conjugate impedance matching

ΓΠΚ

Change of impedance matching

If *L*-shaped matching which consists of $L_1 \& C_1$ is effective

Current flows through only the transistors to use

Switching which consists of inductor and capacitor is realized in low-loss.

2010/09/13

9

ellence

ΓΟΚ

Transformer

- Turn ratio=2:1
- Z_{out} (50Ω)
 ¹⁄₄ Z_{out}(12.5Ω)

$$P_{sat} = \frac{\left(2 \times \frac{V_{DD}}{\sqrt{2}}\right)^2}{(2 \times \frac{1}{4}Z_{out})} = \frac{\left(2 \times 3.3/\sqrt{2}\right)^2}{(2 \times \frac{1}{4}\times 50)}$$
$$= 0.8712[W] = 20.4[dPm]$$

= 0.8712[W] = 29.4[dBm]

ΓΟΚΥΟ

Pursuing Excellence

Transformer

Coupling coefficient = 0.7
 Maximum Available Gain(MAG) = -1.05 dB
 Conversion efficiency=10^(-1.05dB /10) × 100 =78.5 %

Measurement and simulation results agree with each other.

ΓΠΚ

Chip micrograph

TSMC 0.18µm CMOS process

Matsuzawa <u>& Okada Lab.</u>

12

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuing Excellence

S-parameter measurement result

Measurement results are roughly in accordance with simulation results

13

ΓΟΚ

 Input and output losses are measured separately, and are calibrated from results.

Large signal measurement result

TECH ΓΠΚΥΠ **Pursuing Excellence**

15

 $P_{sat} = 25.4 \text{ dBm}$

PAE_{peak} = 20.9 %

 $P_{1dB} = 24.7 \text{ dBm}$ $P_{sat} = 27.1 \text{ dBm}$ $PAE_{peak} = 30.5 \%$

-10

Pin [dBm]

-20

Matsuzawa & Okada Lab.

2010/09/13

-20

-30

Large signal measurement result

16

Comparison of CMOS PAs

	[1]	[2]	[3]	This work
Technology	0. 13 μ m CMOS process		0.18 µm CMOS process	
V _{DD} [V]	1.5	1.5	3.3	3.3
Frequency [GHz]	0.5~5.0	2.4/3.5	2.1~6.0	2.2~3.4, 4.2~5.4
P _{1dB} [dBm]	10~17	_	15~18	21~25
P _{sat} [dBm]	14~21	19	18~22	25~27
PAE _{peak} [%]	*3~16	43	9~17	15~30
Area [mm ²]	3.6	1.3	0.97	1.89

* DE: Drain Efficiency

- [1] H. Roderick, et al., "A 0.13μm CMOS Power Amplifier with Ultra-Wide Instantaneous Bandwidth for Imaging Applications," IEEE ISSCC Dig. Tech. Papers, pp. 374-375, Feb. 2009
- [2] M Ghajar, et al., "Concurrent Dual Band 2.4/3.5 GHz Fully Integrated Power Amplifier in 0.13μm CMOS Technology," IEEE European Microw. Conf., pp. 1728-1731, Sep. 2009
- [3] D.Imanishi, et al., "A 2-6 GHz Fully Integrated Tunable CMOS Power Amplifier for Multi-Standard Transmitters," *IEEE Asia and South Pacific Design Automation Conference*, pp. 351-352, Feb. 2010

ΤΟΚΥΕ

Pursuing Excellence

Conclusion

- 2-stage band-selectable CMOS PA with high PAE
- Circuit design
 - Using TSMC 0.18 μ m CMOS process
 - Switching of the inter-stage matching to change the frequency
 - Use of 2-stage configuration & differential topology& transformer to obtain high PAE
- Results : PA with Small size and High performance
 - Frequency : 2.2 ~ 3.4, 4.2 ~ 5.4 GHz
 - P_{1dB} = 21~25dBm, P_{sat} = 25~27dBm, PAE_{peak} = 15~30%

