A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

James Lin, Kei Yoshihara, Masaya Miyahara, and Akira Matsuzawa

Matsuzawa and Okada Laboratory

Department of Physical Electronics, Tokyo Institute of Technology, Japan

5-bit Low-Voltage Flash ADC

- **1.** An ultra-low power ADC is strongly required
 - > Portable applications, ubiquitous wireless sensor systems, and green IT
- 2. A low-voltage operation is required for further technology scaling and low power operation
 - **Fom of ADCs should be reduced like digital circuits** optimizing speed, resolution and power
 - > Low-voltage calibration techniques are required

Low-Voltage Strategies

 \succ FoM can be significantly reduced with V_{DD} lowering > The FoM-Delay (FD) product suggests the balance between the interleaving number and energy saving

Ec: Energy consumption for each comparator and followed logic circuits.

Forward Body Biasing

> Advantages

- \rightarrow Reduces the delay time to 1/2
- > Allows for 0.5 V operation by reducing V_{TP} and V_{TN} by 60 mV and 100 mV, respectively

> Disadvantage

Leakage current in the proposed ADC is increased by 0.32 mA

Timing-based Calibration

- > Conventional capacitor DAC calibration [1] operating under low voltage
 - > MOS varactor's sensitivity decreases
 - > Delay time and power consumption increases
- Proposed timing-based calibration
 - > Time is independent of supply voltage lowering > DNL/INL 2 LSB \rightarrow 0.5 LSB

Overall Design

Measurement Results of the 5-bit ADC

Fin = 1 MHz

50