A 0.5 V, 1.2 mW, 160 fJ, $600 \mathrm{MS} / \mathrm{s} 5$ bit Flash ADC

James Lin, Kei Yoshihara, Masaya Miyahara, and Akira Matsuzawa
Matsuzawa and Okada Laboratory
Department of Physical Electronics, Tokyo Institute of Technology, Japan

5-bit Low-Voltage Flash ADC

1. An ultra-low power ADC is strongly required
>Portable applications, ubiquitous wireless sensor systems, and green IT
2. A low-voltage operation is required for further technology scaling and low power operation
$>$ FoM of ADCs should be reduced like digital circuits optimizing speed, resolution and power
$>$ Low-voltage calibration techniques are required

FoM $=\frac{\boldsymbol{P}_{\boldsymbol{d}}}{\boldsymbol{f}_{\mathrm{c}} \times \mathbf{2}^{\text {N- }- \text { ENOB }}}$
$\triangle E N O B=\frac{1}{2} \log _{2}\left(1+12\left(\frac{V_{\text {off }}(\sigma)}{V_{\mathrm{q}}}\right)^{2}\right)$
$V_{\text {off (f) :Offset voltage }}$
$V_{\mathrm{q}}: 1 \mathrm{LSB}$ voltage
Forward Body Biasing

$>$ Advantages

$>$ Reduces the delay time to $1 / 2$
$>$ Allows for 0.5 V operation by reducing V_{TP} and V_{TN} by 60 mV and 100 mV , respectively
$>$ Disadvantage
$>$ Leakage current in the proposed ADC is increased by 0.32 mA

Low-Voltage Strategies

$>$ FoM can be significantly reduced with V_{DD} lowering
$>$ The FoM-Delay (FD) product suggests the balance between the interleaving number and energy saving

E_{c} : Energy consumption for each comparator and followed logic circuits.

Timing-based Calibration

>Conventional capacitor DAC calibration [1] operating under low voltage
$>$ MOS varactor's sensitivity decreases
$>$ Delay time and power consumption increases
$>$ Proposed timing-based calibration
$>$ Time is independent of supply voltage lowering
$>$ DNL/INL 2 LSB $\rightarrow 0.5$ LSB
Conventional Cap.-DAC Proposed Timing-based Calibration Technique [1] Calibration Technique

Timing controller

$V_{\mathrm{DD}}=0.5 \mathrm{~V}, \mathrm{f}_{\mathrm{s}}=500 \mathrm{MHz}$

	no CAL	Cap CAL [1]	Proposed
$\mathrm{V}_{\text {off }}(\sigma)[\mathrm{mV}]$	10.1	5.79	1.49
$\mathrm{P}_{\mathrm{d}}[\mu \mathrm{W}]$	14.5	21.4	24.5
Delay [ps]	365	756	511

[1] V. Giannini, ISSCC2008

Overall Design
$>8 \mathrm{~S} / \mathrm{H}$ circuits
$>$ Increase available input frequency
> Allow flexible interface
> Increase input capacitance, input swing current, and power dissipation > 2-bit gate-interpolated comparators [2]
> Reduce power consumption

