A Challenge to a 60GHz CMOS Wireless Transceiver for 40Gbps

Kenichi Okada

Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan

okada@ssc.pe.titech.ac.jp

We are now trying to realize Multi-Gbps wireless communication using 60GHz carrier, and our group has already realized a 60-GHz direct-conversion transceiver, which can communicate at the IEEE802.15.3c full-rate for every 16QAM/8PSK/QPSK/BPSK mode. The maximum data rates with an antenna built in the package are 8Gbps in QPSK mode and 11Gbps in 16QAM mode within a BER of $< 10^{-3}$ [1]. In this presentation, some important circuit blocks are introduced, and the future 40Gbps front-end is also discussed, which can be theoretically realized by 64QAM with 4 channel bonding.

Fig. 1 shows circuit schematic of 60GHz low-noise amplifier[2]. As a low-noise amplifier, gain and noise figure are commonly important, and linearity and gain control are also important for wide dynamic range in communication distance. In addition, gain flatness becomes considerably important because the flatness has significant influence on ISI. The proposed LNA maintains the gain flatness and low-noise high-gain characteristic by asymmetric transistor and low-loss T-line as shown in Fig. 3.

Fig. 4 shows block diagram of 60GHz quadrature frequency synthesizer using the injection-lock technique [3]. Fig. 5 shows phase noise of locked state, and Fig. 2 and 6 show chip microphoto.

References

[1] K. Okada, *et al.*, "A 60-GHz 16QAM/8PSK/QPSK/BPSK Direct-Conversion Transceiver for IEEE802.15.3c," IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2011.

[2] A. Musa, R. Murakami, T. Sato, W. Chiavipas, K. Okada, and A. Matsuzawa, "A 58-63.6GHz Quadrature PLL Frequency Synthesizer in 65nm CMOS," IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov. 2010.

[3] N. Li, *et al.*, "A 24 dB Gain 51-68 GHz CMOS Low Noise Amplifier Using Asymmetric-Layout Transistors," IEEE European Solid-State Circuits Conference (ESSCIRC), pp.342-345, Sep. 2010.

Reference	RFIC2008	JSSC2007	ESSCIRC2007	JSSC2007	ISSCC2008	VLSI2009	This work[2]
Technology	90 nm	90 nm	90 nm	90 nm	65 nm	90 nm	65 nm
Topology	CS	Cas.	Cas.	CS	Cas.	Cas.	CS
#stage	3	2	2	2	3	3	4
f _{center} [GHz]	58	58	64	63	60	63	53
Gain [dB]	15	14.6	15.5	12.2	19.3(diff)	20	24
NF [dB]	4.4	5.5	6.5	6.5	6.1	6.8	4.0-7.6
3dB BW [GHz]	56-61 [#]	53.5-60.5#	60-68 [#]	-	55-63 [#]	56-70 [#]	51-68
P _{DC} [mW]	3.9	24	86	10.5	35	36	30

TABLE IPERFORMANCE COMPARISON

Graphically estimated

PERFORMANCE COMPARISON This Work [1] [10][11] [6] [7] [12] CMOS Tech 130nm 65nm 45nm 130nm 90nm 90nm 130nm Supply [V] 12 1.1 1.2 1.5 1.2 12 1.5/0.8Ref. Frequency [MHz] 251.3 203.2 234 36 100 60 $44.8 \sim 49.3$ Frequency [GHz] 64.3 ~ 66.2 50.8 ~ 53 58 ~ 60.4 61 ~ 63 46 ~ 50.5 58 ~ 6 $57 \sim 66$ Phase Noise@1MHz [dBc/Hz] -96 (60.48GHz) -75 -84.1 6 -85.07 -85.1 -80 -72 Power Consumption [mW] 78 77.5 (60.48GHz) 72 87 80 78 57 -15.2 59.88 50.75 Ref. Spur Level [dBc] -67 ~ -58@20GHz -42 -49 -27 256 Division Ration 1620, 1680, 1740, 1800 512-8184 256/258 1024 1024 128 Output Type Quadrature Quadrature Differential Differential Differential Differential Differential

TABLE II

Fig.1: Schematic of 60GHz low-noise amplifier

Fig.2: Chip microphoto of LNA

Fig.4: 60GHz Frequency synthesizer using quadrature injection-locked oscillator (QILO)

Fig.5: Phase noise of QILO

Fig.6: Chip microphoto of QILO