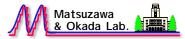
PursuingExcellence

A 6-10 GHz Tunable Power Amplifier for Reconfigurable RF Transceivers

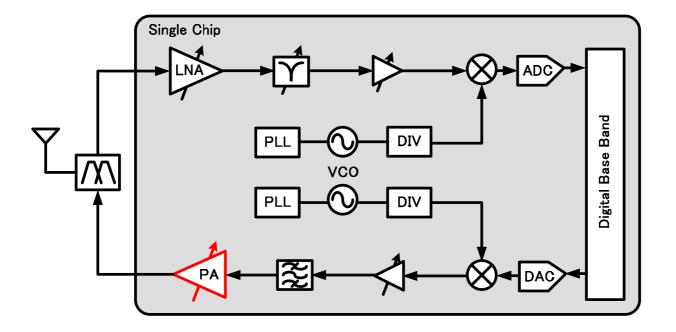
<u>JeeYoung Hong</u>, Daisuke Imanishi, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

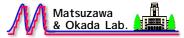

FDKYD TIECH PursuingExcellence

1

Introduction

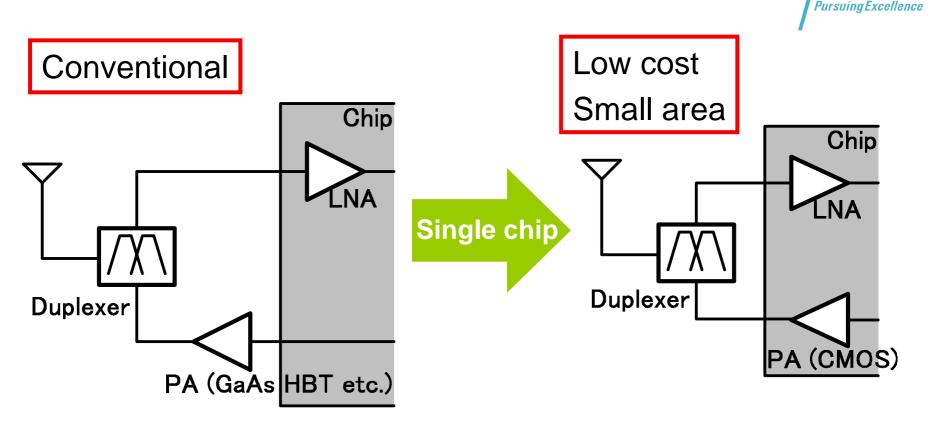

- PA design
- Measurement results

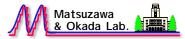
Conclusion


Introduction

TOKYD TIECH Pursuing Excellence

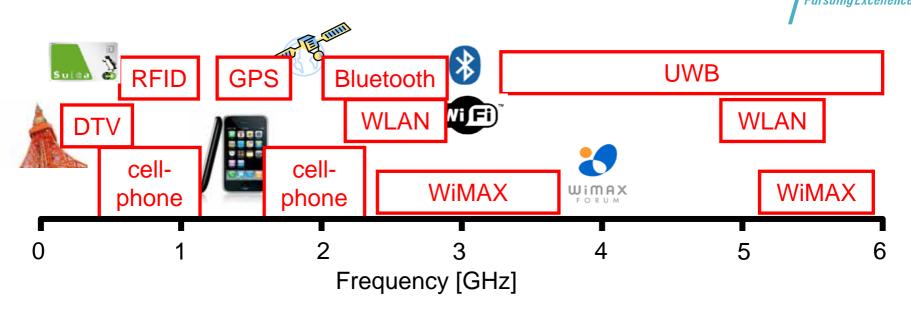
PA (Power Amplifier)


: A circuit used to convert a low-power RF signal into a larger signal of significant power at transmitter

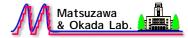

Introduction

ΤΟΚΥΟ ΤΙΞΕΗ-

3

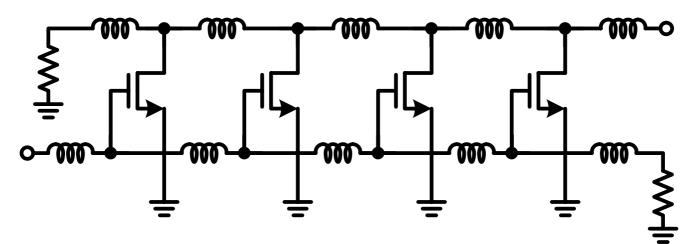


Single chip transceiver is demanded because of its low cost and downsizing.



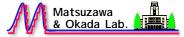
Introduction

TOKYO TIECH PursuingExcellence



- Various wireless communication standards
- ~ 6GHz : Various applications
- 6~10GHz : Potential application

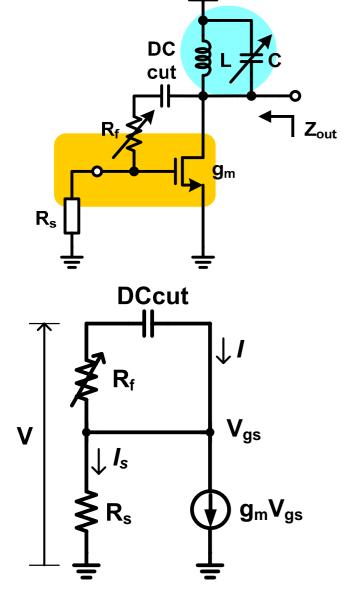
Conventional wideband PA


Distributed power amplifier

Wideband input / output matching
 Possibility of intermodulation

Lack of the optimum impedance matching Insufficient output power

Many inductor Large area

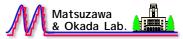


5

ΓΠΚ

Output impedance matching

16 ...


If
$$r_{ds} =$$
,
$$Z_{out} = \frac{R_f + R_s}{g_m R_s + 1} // \frac{1}{j_{\omega} C} // (R_L + j_{\omega} L)$$

 $R_{\rm s}$: source impedance (50 Ω) $R_{\rm L}$: inductor parasitic resistance

$$V = V_{gs} + \frac{V_{gs}}{R_s}R_f$$

$$I = I_s + g_m V_{gs} = (\frac{1}{R_s} + g_m)V_{gs}$$

$$\therefore Z = \frac{V}{I} = \frac{R_f + R_s}{g_m R_s + 1}$$

6

Pursuing Excellence

ΓΟΚΥΟ

Output impedance matching

$$Z_{out} = \frac{R_f + R_s}{g_m R_s + 1} // \frac{1}{j_{\omega} C} // (R_L + j_{\omega} L)$$

$$Z = \frac{1}{j_{\omega} C} // (R_L + j_{\omega} L)$$

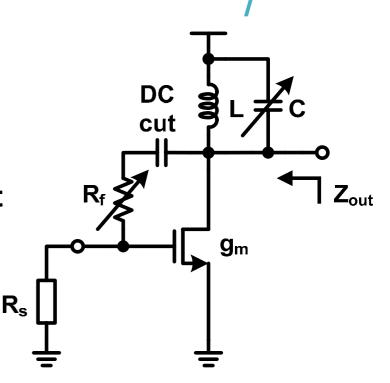
$$= \frac{1}{\frac{1}{(R_L + j_{\omega} L)} + j_{\omega} C} = \frac{R_L + j_{\omega} (L - R_L^2 C - \omega^2 L^2 C)}{(1 - \omega^2 L C)^2 - \omega^2 R_L^2 C^2}$$

(Calculation of resonance frequency)

$$L - R_L^2 C - \omega^2 L^2 C = 0$$

When $\omega = \sqrt{\frac{1}{LC} - \left(\frac{R_L}{L}\right)^2}$, $Z = \frac{L}{R_L C}$
 $\therefore Z_{out} = \frac{R_f + R_s}{g_m R_s + 1} // \frac{L}{CR_L}$

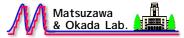
FAI///A

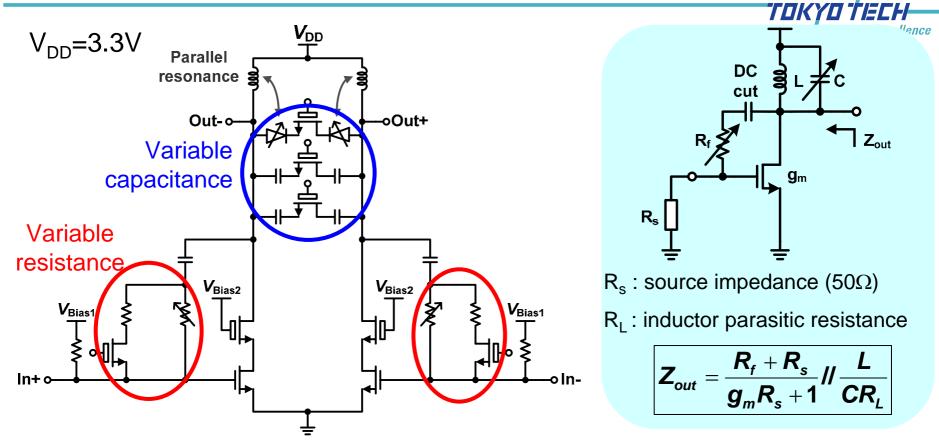

Output impedance matching

$$Z_{out} = \frac{R_f + R_s}{g_m R_s + 1} / / \frac{L}{CR_L}$$

Tune C cancellation of an imaginary part

Tune $R_{\rm f}$ adjustment of a real part (50 Ω)


Z_{out} depends on resonance frequency


ΓΠΚ

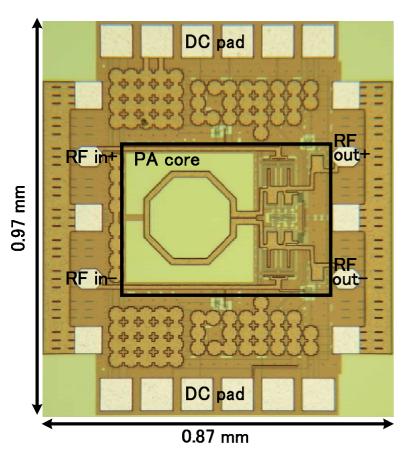
\rightarrow Z_{out} can be matched 50 Ω at arbitrary frequency

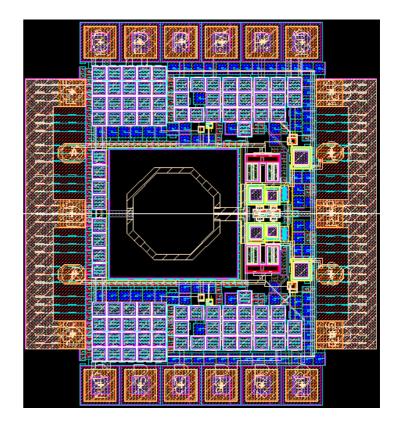
In fact, r_{ds} is small Cascode topology raises r_{ds}

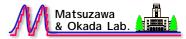
Schematic

Q

Okada Lah

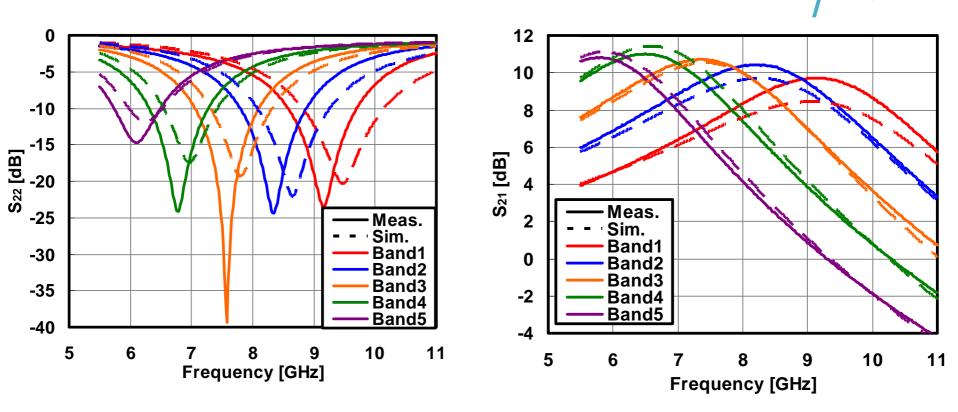

Class-A bias & Differential topology for 3dB larger P_{sat}


- Change output matching band by switching C and R
- Isolators was removed by maintaining Z_{out} to 50 Ω

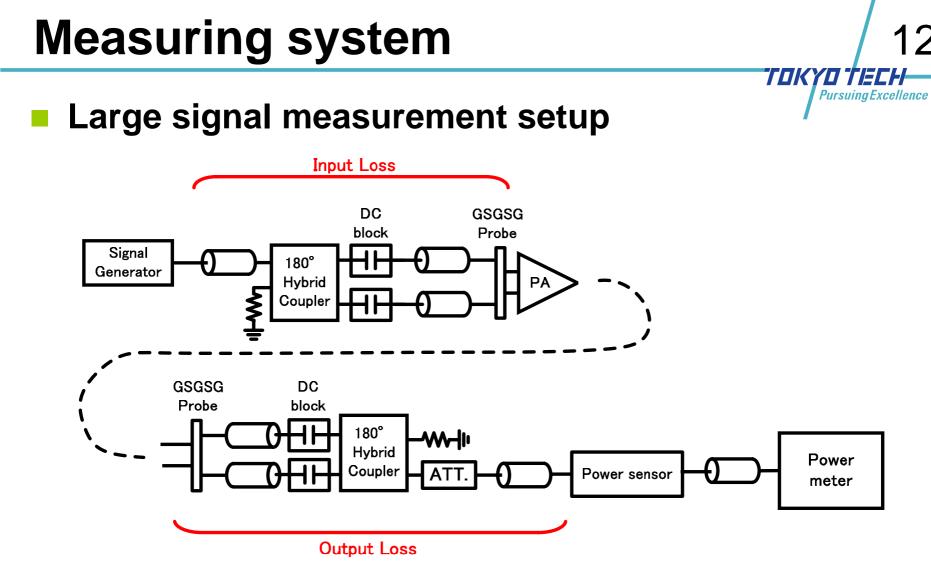

Chip micrograph

10

TSMC 0.18 μm CMOS process

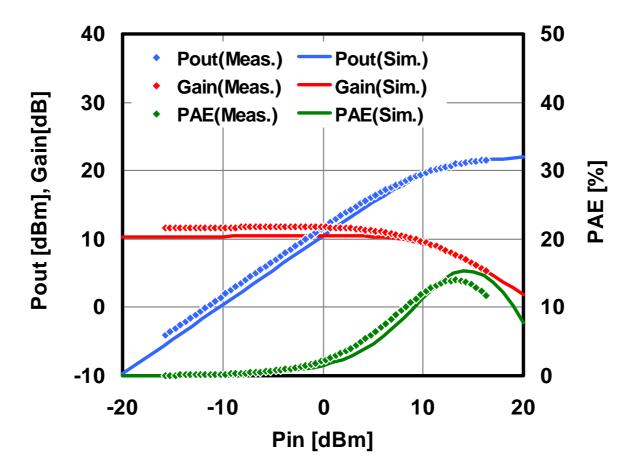


S-parameter measurement result

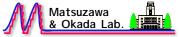

Pursuing Excellence

ΓΟΚΥ

Measurement results are slightly shifted to lower frequency due to model inaccuracy



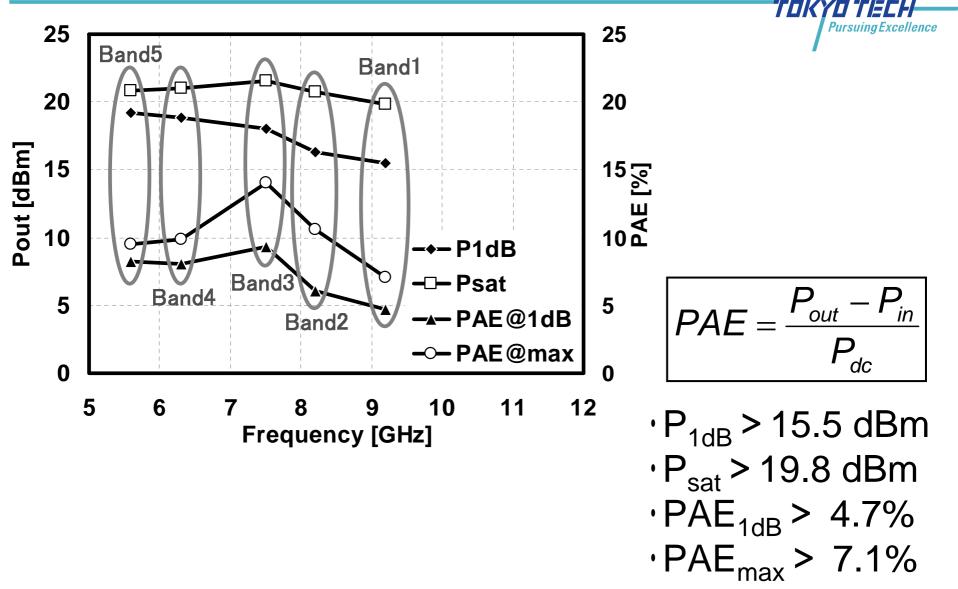
 Input and output losses are measured separately, and are calibrated from results.



Large signal measurement result

band 3 @ 7.5GHz

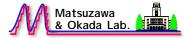
Measurement and simulation results agree with each other.



13

Pursuing Excellence

ΓΟΚ


Large signal measurement result

Matsuzawa & Okada Lab.

14

Simulation **Measurement** Technology TSMC 0.18 µm CMOS 3.3 V V_{DD} S₂₂ < -10 dB 6.0~10.2 GHz 5.7~9.7 GHz Frequency P_{1dB} 17.6~19.4 dBm 16~19 dBm $\mathsf{P}_{\underline{sat}}$ 20.9~22.0 dBm 20~22 dBm PAEpeak 7~14 % 9.7~15.3 % 0.20 mm^2 Area Core size: 0.50×0.39

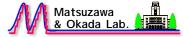
15

Pursuing Excellence

ΓΟΚΥΟ

Comparison of CMOS PAs

tech-

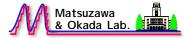

Irsuing Excellence

ΤΟΚ

	[1]	[2]	[3]	[4]	This work
Technology	0.09 µm	0.18 µm CMOS process			
V _{DD} [V]	-	1.5	2.0	-	3.3
Frequency [GHz]	*5.2~13	6~10	3~10	3.7~8.8	5.74 ~ 9.68
P _{1dB} [dBm]	-	**5	5.6~9.4	~15.6	15.5 ~ 19.2
P _{sat} [dBm]	25.2	-	-	19	19.8 ~ 21.6
PAE _{peak} [%]	21.6	17.6	-	25	7.1~14.0
Area [mm ²]	***0.70	1.08	1.76	2.8	***0.20

* S_{22} < -3dB ** Average P_{1dB} *** Core size

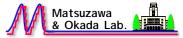
- [1] H. Wang, et al., "A 5.2-to-13GHz Class-AB CMOS Power Amplifier with a 25.2dBm Peak Output Power at 21.6% PAE," IEEE International Solid-State Circuits Conference, pp. 44-46, 2010
- [2] H. Chung, et al., "A 6-10-GHz CMOS Power Amplifier with an Inter-stage Wideband Impedance Transformer for UWB Transmitters," EuMC, pp. 305-308, Oct. 2008
- [3] C. Lu, et al., "A CMOS Power Amplifier for Full-Band UWB Transmitters," RFIC, pp. 397-400, June. 2006
- [4] C. Lu, et al., "Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation," TMTT, pp. 2320-2328, Nov. 2007



Conclusion

- 6-10 GHz Multi-band tunable CMOS PA
 - For realization of single chip transceiver
 - To cover various standards
- Prototype of a CMOS PA
 - TSMC 0.18µm CMOS process
 - Using parallel resonance and resistive feedback

Results


- Frequency: 5.7 ~ 9.7 GHz
- P_{1dB} > 15.5 dBm, PAE_{peak} > 7.1%, Core size=0.20mm²
- The first tunable CMOS PA at 6-10GHz

ΓΠΚ

18 TOKYOTIECH PursuingExcellence

Thank you for your attention.

