ISSCC 2010 F2:Reconfigurable RF and Data Converters

Reconfigurable RF CMOS Circuits for Cognitive Radios

Kenichi Okada Tokyo Institute of Technology, Japan

Outline

- Roadmap for multi-standard RFIC
- Rx requirements -Linearity & NF
- LO requirements
 - $-\mathbf{Q}$ and \mathbf{V}_{DD}
 - -Frequency tuning range
 - -Multiband VCO results
- Tx requirements – Tunable PA results
- Conclusion

Motivation

Demand for a multi-standard RFIC

- Frequency range from 400MHz to 6GHz
- Smaller footprint
- Smaller number of components with competitive sensitivity and Pdc

2010/2/7

Multi-standard radio roadmap

		Present		Future		
		individual approach	near-band combined	one-chip limited reconfiguration	one-chip full reconfiguration	
Rx	LNA*	NF <2.2dB (2.5dB total)	NF <2.2dB (2.5dB total)	400MHz-6GHz NF <2dB	400MHz-6GHz NF <2dB	
	Mixer	IIP3 >-5dBm	IIP3 >0dBm w/o SAW filter	IIP3 >0dBm w/o SAW filter	IIP3 >0dBm with tunable BPF/BRF	
		IIP2 >40dBm	IIP2 >60dBm	IIP2 >70dBm	IIP2 >70dBm	
Тх	PA	Off-chip PAs	Reduced off- chip PAs, Reduced off- chip matching	On-chip single- band PAs	On-chip multi- standard PA	
				Off-chip multi- standard PAs	Off-chip multi- standard PA	
LO	VCO	GSM	GSM	-185dBc/Hz(FoM) no spurs, GSM	-190dBc/Hz(FoM) no spurs, GSM	
		Multiple PLLs	Reduced multiple PLLs	400MHz-6GHz with 1 inductor	400MHz-6GHz with 1 inductor	

*Lower NF/sensitivity is required for some commercial applications.

2010/2/7

The present multi-standard RFIC

The near-future multi-standard RFIC

- Smaller number of IO pins and external components
 - •A single-ended input is better.
- HB Rx(1.8-2.1GHz) should be combined without SAW filters.

NF<2.2dB, IIP3 >-2.5dBm, IIP2 >70dBm

- GSM bands should also be combined.
- Handling of UMTS/LTE bands 7 and 11
- Must keep the same sensitivity with smaller area and smaller power consumption

One-chip Reconfigurable RFIC

- All cellular, WLAN/WPAN, and broadcast services should be covered.
- On-chip tunable Tx/Rx filters optimized for some particular bands
- On/off-chip tunable/switchable multi-standard PA
- External switchable duplexers are utilized for each FDD standard.

One-chip full Reconfigurable RFIC

- Equally designed for every bands
- Just advancement of NF and linearity improvement with tunable on-chip filters for possible interferers
- On/off-chip tunable/switchable multi-standard PA
- without special optimization for particular bands
- Possibly, external switchable duplexer/SW are still required.
- Seamless TDD/FDD reconfiguration
- Reconfigurablity is required for RF/ABB
- Much smaller frequency step
- Cognition time (RF assisted)

2010/2/7

Outline

- Roadmap for multi-standard RFIC
- Rx requirements - Linearity & NF
- LO requirements –Q and V_{DD}
 - -Frequency tuning range -Multiband VCO results
- Tx requirements – Tunable PA results
- Conclusion

Rx requirements

- Linearity is very important for FDD systems like UMTS.
- Tx signal leaks into Rx path, and it becomes a very large interferer.
- Linearity is also very important, especially for concurrent operation of multiple on-chip transceivers.

On-Chip PA-to-LNA isolation

Must consider isolation between on-chip RF blocks for concurrent operation of multiple front-ends

2010/2/7

Requirements for SAW-less UMTS Rx

Required IIP3 for SAW-less mixer

IIP3 of -2.5dBm is required for the entire Rx chain.

2010/2/7

Requirements for multi-standard Rx

Some kind of reconfiguration is required. On-chip tunable filter is indispensable. Rx

- Band width 400MHz-6GHz
 •GSM/UMTS/LTE, GPS, WLAN, BT, DTV/FM, etc
- Rx NF <2.5dB for Cellular, IIP3 >-2.5dBm for UMTS
- Rx NF <2dB for GPS
- LNA
- IIP3 >0dBm
- NF <2.2dB
- PG = 15dB

Mixer (with LNA of PG=15dB, NF=2.2dB, IIP3=0dBm)

- NF <6dB
- IIP3 >16.1dBm without inter-stage filter
- IIP2 >70dBm without inter-stage filter

2010/2/7

Outline

- Roadmap for multi-standard RFIC
- Rx requirements - Linearity & NF
- LO requirements
 - $-\mathbf{Q}$ and \mathbf{V}_{DD}
 - Frequency tuning range
 Multiband VCO results
- Tx requirements – Tunable PA results
- Conclusion

LO requirements

- 10MHz-10GHz continuous tuning
- Low phase noise
 - GSM850/900 -162dBc/Hz@20MHz-offset
 - Q of on-chip inductor < 15
 - Supply voltage <1.5V
- No spurs
- Quadrature outputs with less I/Q mismatch
- Low power consumption
- Small layout area smaller number of on-chip inductors

VCO topologies

*A. Mazzanti and P. Andreani, JSSC 2008

2010/2/7

Theoretical limit of phase noise

NMOS VCO can realize the lowest phase noise theoretically.

$$\boldsymbol{PN} = 10\log_{10}\left(\frac{\boldsymbol{\omega}^{3}}{\Delta\boldsymbol{\omega}^{2}}\frac{\boldsymbol{L}}{\boldsymbol{Q}}\frac{\boldsymbol{k}_{B}\boldsymbol{T}(1+\boldsymbol{\gamma}_{n})}{4\boldsymbol{V_{\text{DD}}}^{2}}\right)$$

Limited Q-factor

Q-factor of LC tank

5GHz-to-15GHz is better to obtain a high-Q LC resonator.

2010/2/7

Supply voltage issues

- VCO Phase Noise
- LNA Linearity, PA Pout

$$PN = 10 \log_{10} \left(\frac{\omega^{3}}{\Delta \omega^{2}} \frac{L}{Q} \frac{k_{B}T(1+\gamma_{n})}{4V_{DD}^{2}} \right)$$
ower supply for a mobile RFIC

Required supply voltage for GSM

GSM900 Tx LO: -165dBc/Hz@20MHz-offset

Qtank	Vdd [V]	ldeal PN [dBc/Hz] +5dB @0.9GHz	Required Ibias [mA]	Pdc [mW]
Q=9	1.2	-162	7.8	14.1+α
@3.6GHz	1.5	-164	7.8	14.1+α
Q=12 (I –1 2pH)	1.2	-164	5.8	10.5+ α
@7.2GHz	1.5	<u>-166</u>	5.8	10.5+ α
Q=30 (ext.)	1.2	<u>-168</u>	1.5	2.7+ α
@7.2GHz	1.5	<u>-170</u>	1.5	2.7+ α

VCO cannot reach with low digital VDD.

2010/2/7

LO generation for GSM/UMTS/LTE

conventional approach

Requirements for multi-standard LO

- Satisfy all existing/possible wireless standards
- 10MHz-6GHz continuous tuning with 1 inductor
- Fine tuning and fast settling for cognitive radios
- Low phase noise (GSM850/900)
- No spurs for wideband RF signal
- Quadrature outputs with less I/Q mismatch
- Low power consumption <10mW

Outline

- Roadmap for multi-standard RFIC
- Rx requirements -Linearity & NF
- LO requirements

 Q and V_{DD}
 Frequency tuning range
 Multi-band VCO results
- Tx requirements – Tunable PA results
- Conclusion

Previous work for multi-band VCO

- Switched-Capacitor Resonator
 - + Reduced Kvco

- QL is degraded at edge of tuning range
- Limited Cmax/Cmin (parasitic capacitance limited)
- 1/2 Divider
 - + Continuous wide tuning range
 - Wide tuning range requirement for VCO
 - Poor phase noise
- Dividers, Mixers
 - + Small area
 - Large power consumption
 - Spurious tones
- *Z. Safarian, et al., CICC, Sep. 2008.

ISSCC 2010 Wireless Forum - K. Okada, Tokyo Tech

Core-VCO: fmax/fmin = 1.5

Core-VCO: fmax/fmin = 2

Proposed wideband VCO

Circuit schematics

- ILFD generates 1.33 to 6.0 GHz output.
- Lower frequency (under 1.33GHz) can be obtained by using FF dividers.

2010/2/7

Impulse Sensitivity Function (ISF*)

Ideal Current Conduction

Current conduction of class-C VCOs

Class-C VCO

ISSCC 2010 Wireless Forum - K. Okada, Tokyo Tech

2010/2/7

Current conduction of class-C VCOs

Tail-feedback VCO

2010/2/7

Injection Locked Frequency Divider

2-stage differential ILFD is utilized. Tuning range : 1.3 to 6.0 GHz Merit: Quadrature output, No Spur, Wide frequency range

2010/2/7

Measurement Result

Fabricated by 90 nm CMOS Process

Output spectrum

Even harmonics can be canceled by differential config. Odd harmonics can be canceled by harmonic-rejection mixer.

2010/2/7

VCO performance

Technology	Standard 90nm CMOS
Supply voltage	1.2 V
Power consumption of VCO core	4.8 - 10.2 mW
Power consumption of ILFD	1.0 - 1.3 mW
Power consumption of FF dividers	- 0.1 mW
Total power consumption	5.9 - 11.2 mW
Tuning range	9.3 MHz - 5.7 GHz
Chip area	250 μm x 200 μm

VCO measurement summary

	This work*	VLSI 2009**	RFIC 2009***
Architecture	VCO with ILFD	QVCO with mixer and dividers	2VCOs and dividers
Divide ratio	2,3,4,6	2,3,4,5, 6,8,10	2,4,8,16,32
Tuning range of core LC-VCO	±20 %	±20 %	±33.3 % (total)
Output freq.	0.009 - 5.7 GHz	1 - 10 GHz	0.1 - 5.0 GHz
Power cons.	5.9 - 11.2 mW	31 mW	19.8 mW
FoMT	-210 dBc/Hz	-194 dBc/Hz	-209 dBc/Hz
Area	0.05 mm ²	0.29 mm ²	0.22 mm ²

*S. Hara, et al., A-SSCC, Nov. 2009

B. Razavi, *VLSI Circuits*, June 2009. *P. Nuzzo, *et al.*, RFIC, June 2009.

Summary and Conclusion

- A differential LC-VCO and injection locked frequency divider are utilized instead of a QVCO and SSBMs to reduce spurious, layout area, and power consumption.
- The proposed wideband VCO can achieve wide tuning range with the best FoM_T.

FTR=199% (9.3MH-5.7GHz) FOMT=-210dBc/Hz

Outline

- Roadmap for multi-standard RFIC
- Rx requirements -Linearity & NF
- LO requirements
 - $-\mathbf{Q}$ and \mathbf{V}_{DD}
 - Frequency tuning range
 Multi-band VCO results
- Tx requirements – Tunable PA results
- Conclusion

Tx requirements

- On/off-chip tunable/switchable multi-standard PA
- Must keep the same Pout/PAE with smaller total footprint size and less number of components

Challenge of tunable CMOS PA

- •Tunable CMOS PA with tunable impedance matching to reduce external components
 - isolators

-Reduce reflection due to impedance mismatch

-Protect PAs from reflected wave

Proposed

Output impedance tuning 1

If
$$r_{ds} = \infty$$
,
 $Z_{out} = \frac{R_f + R_s}{g_m R_s + 1} // \frac{1}{j\omega C} // (R_L + j\omega L)$
When $f = \frac{1}{2\pi \sqrt{LC}}$
(Resonance frequency)
 $Z_{out} = \frac{R_f + R_s}{g_m R_s + 1} // \frac{L}{CR_L}$

R_L: inductor parasitic resistance

Tune C to cancel imaginary part of Z_{out} at arbitrary frequency

2010/2/7

Output impedance tuning 2

$$\boldsymbol{Z_{out}} = \frac{\boldsymbol{R_f} + \boldsymbol{R_s}}{\boldsymbol{g_m}\boldsymbol{R_s} + 1} \boldsymbol{I} \boldsymbol{I} \frac{\boldsymbol{L}}{\boldsymbol{C}\boldsymbol{R_L}}$$

- Tune \mathbf{R}_{f} to match $\mathbf{Z}_{\mathrm{out}}$ to 50 Ω
- Z_{out} depends on the value of C, so R_f needs to be adjusted according to the matching frequency

 R_s : source impedance (50 Ω)

R_L: inductor parasitic resistance

Cascoded thick-oxide transistors are utilized because of larger r_{ds} and voltage-stress robustness.

2010/2/7

Schematic of the proposed PA

- Change output matching band by switching C and R
- Differential topology for 3dB larger P_{sat}

Voltage stress of switches

- Maximum voltage swing at output node is about V_{DD} =3.3V
- The same voltage is applied to switches when they are off
- Thick oxide nMOS is applied as a switch

Switch biasing

Simulation of switch biasing effect

Chip micrograph[7]

- •0.18µm CMOS
- Chip was measured using probes and external DC block capacitors

Small signal S-parameters

• Differential mode S-parameter calculated from 4-port S-parameter

0.9~3.0GHz, S22 < -10dB, S21 > 16dB

2010/2/7

Pout, PAE v.s. Frequency

Frequency [GHz]

- Measured large signal performance in each band and each signal frequency
- P_{sat} is larger than 19dBm, and PAE@peak is larger than 11% at the entire frequency range

2010/2/7

Comparison of CMOS PAs

	Tech.	V _{DD} [V]	Freq. [GHz]	P _{sat} [dBm]	PAE@peak [%]	Area [mm²]	Output matching
RFIC '04 [3]	0.13μm CMOS	2.0	2.0 ~ 8.0	7 ~ 10	2 (@1dB)		Wideband
ISSCC '09 [4]	0.13μm CMOS	1.5	0.5 ~ 5.0	14 ~ 21	3 ~ 16 (drain eff.)	3.6	Wideband
T-MTT '07 [5]	0.18μm CMOS	2.8	3.7 ~ 8.8	16 ~ 19	8 ~ 25	2.8	Wideband
ISSCC '09 [6]	0.13μm CMOS	3.0	1.0 ~ 2.5	28 ~ 31	18 ~ 43	2.56*	Wideband
This work [7]	0.18μm CMOS	3.3	0.9 ~ 3.0	20 ~ 22	11 ~ 23	1.03	Tunable

*With distributor

Summary & Conclusion

- The first tunable CMOS PA utilizing a feedback technique
- 0.9-3.0 GHz output matching
- At the entire frequency range, over 19dBm output power and over 11% PAE is achieved

Outline

- Roadmap for multi-standard RFIC
- Rx requirements -Linearity & NF
- LO requirements – Q and V_{DD}
 - Frequency tuning range
 Multi-band VCO results
- Tx requirements - Tunable PA results
- Conclusion

Conclusion

Rx

- NF and linearity trade-off is very tough for realizing a full-SDR/CR. A new idea is still required.
- Some kind of reconfiguration is required to satisfy various requirements for every wireless standards.

- Linearity, Noise, Power consumption, etc

• We should also pay attention to the research trend of external components, *e.g.*, duplexer, antenna, SW, etc.

Тх

• Tunablity is required.

LO

• There are some ways, but it is still challenging.

2010/2/7

VCO

- P. Andreani, and A. Fard, "More on the 1/f² Phase Noise Performance of CMOS Differential-Pair LC-Tank Oscillators," IEEE Journal of Solid-State Circuits, vol.41, no.12, pp.2703-2712, Dec. 2006.
- 2. A. Mazzanti, and P. Andreani, "Class-C Harmonic CMOS VCOs With a General Result on Phase Noise," IEEE Journal of Solid-State Circuits, vol.43, no.12, pp.2716-2729, Dec. 2008.
- E. Hegazi, A.A. Abidi, "A 17-mW Transmitter and Frequency Synthesizer for 900-MHz GSM Fully Integrated in 0.35-μm CMOS," IEEE Journal of Solid-State Circuits, vol.38, no.5, pp.782-792, May 2003.
- S. Hara, K. Okada, and A. Matsuzawa, "A 9.3MHz to 5.7 GHz Tunable LC-based VCO Using a Divide-by-*N* Injection-Locked Frequency Divider," IEEE Asian Solid-State Circuits Conference, pp.81-84, Nov. 2009.
- 5. P. Nuzzo, K. Vengattaramanem, M. Ingels, V. Giannini, M. Steyaert, and J. Craninckx, "A 0.1-0.5GHz Dual-VCO Software-Defined $\Delta\Sigma$ Frequency Synthesizer in 45nm Digital CMOS," IEEE RFIC Symposium, pp.321-324, June 2009.
- 6. B. Razavi, "Multi-Decade Carrier Generation for Cognitive Radios," IEEE Symposium on VLSI Circuits, pp.120-121, June 2009.
- Y. Ito, H. Sugawara, K. Okada, and K. Masu, "A 0.98 to 6.6GHz Tunable Wideband VCO in a 180nm CMOS Technology for Reconfigurable Radio Transceiver," IEEE Asian Solid-State Circuits Conference, pp. 359-362, Nov. 2006.

- 8. S. Hara, T. Ito, K. Okada, and A. Matsuzawa, "Design Space Exploration of Low-Phase-Noise LC-VCO Using Multiple-Divide Technique," IEEE International Symposium on Circuits and Systems, pp.1966-1969, May 2008.
- 9. R. Murakami, S. Hara, K. Okada, and A. Matsuzawa, "Design Optimization of Voltage Controlled Oscillators in Consideration of Parasitic Capacitance," IEEE International Midwest Symposium on Circuits and Systems, Aug. 2009.

PA

- 1. R. Shrestha, E. A. M. Klumperink, E. Mensink, G. J. M. Wienk, and B. Nauta, "A Polyphase Multipath Technique for Software-Defined Radio Transmitters," IEEE Journal of Solid-State Circuits, vol.41, no.12, pp.2681-2692, Dec. 2006.
- S. Kousai, D. Miyashita, J. Wadatsumi, A. Maki, T. Sekiguchi, R. Ito, and M. Hamada, "A 1.2V 0.2-to-6.3GHz Transceiver with Less Than -29.5dB EVM@-3dBm and a Choke/Coil-Less Pre-Power Amplifier," IEEE International Solid-State Circuits Conference, pp.214-215, Feb. 2008.
- C. Grewing, K. Winterberg, S. van Waasen, M. Friedrich, G. L. Puma, A. Wiesbauer, and C. Sandner, "Fully Integrated Distributed Power Amplifier in CMOS Technology, optimized for UWB Transmitters," IEEE RFIC Symposium, pp.87-90, June 2004.
- J. Roderick and H. Hashemi, "A 0.13 m CMOS Power Amplifier with Ultra-Wide Instantaneous Bandwidth for Imaging Applications," IEEE International Solid-State Circuits Conference, pp.374-375, Feb. 2009.

2010/2/7

- 5. C. Lu, A.-V. H. Pham, M. Shaw, and C. Saint, "Linearization of CMOS Broadband Power Amplifiers Through Combined Multigated Transistors and Capacitance Compensation," IEEE Transactions on Microwave Theory and Techniques, vol.55, no.11, pp.2320-2328, Nov. 2007.
- 6. S. Kousai and A. Hajimiri, "An Octave-Range Watt-Level Fully Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off Efficiency Improvement," IEEE International Solid-State Circuits Conference, pp.376-377, Feb. 2009.
- D. Imanishi, K. Okada, and A. Matsuzawa, "A 0.9-3.0 GHz Fully Integrated Tunable CMOS Power Amplifier for Multi-Band Transmitters," IEEE Asian Solid-State Circuits Conference, pp.253-256, Nov. 2009.

Rx

- M. Brandolini, P. Rossi, D. Manstretta, and F. Svelto, "Toward Multistandard Mobile Terminals - Fully Integrated Receivers Requirements and Architectures," IEEE Transactions on Microwave Theory and Techniques, vol.53, no.3, pp.1026-1038, Mar. 2005.
- T. Sowlati, *et al.* (Skyworks), "Single-Chip Multiband WCDMA/HSDPA/HSUPA/EGPRS Transceiver with Diversity Receiver and 3G DigRF Interface Without SAW Filters in Transmitter / 3G Receiver Paths," IEEE International Solid-State Circuits Conference, pp.116-117, Feb. 2009.
- 3. A. Hadjichristos, *et al.* (Qualcomm), "Single-Chip RF CMOS UMTS/EGSM Transceiver with Integrated Receive Diversity and GPS," IEEE International Solid-State Circuits Conference, pp.118-119, Feb. 2009.

2010/2/7

- V. Giannini, P. Nuzzo, C. Soens, K. Vengattaramane, M. Steyaert, J. Ryckaert, M. Goffioul, B. Debaillie, J. V. Driessche, J. Craninckx, and M. Ingels (IMEC), "A 2mm² 0.1-to-5GHz SDR Receiver in 45nm Digital CMOS," IEEE International Solid-State Circuits Conference, pp.408-409, Feb. 2009.
- D. Kaczman, M. Shah, M. Alam, M. Rachedine, D. Cashen, L. Han, and A. Raghavan (Freescale), "A Single-Chip 10-Band WCDMA/HSDPA 4-Band GSM/EDGE SAW-less CMOS Receiver With DigRF 3G Interface and +90dBm IIP2," IEEE Journal of Solid-State Circuits, vol.44, no.3, pp.718-739, Mar. 2009.
- M. C. M. Soer, E. A. M. Klumperink, Z. Ru, F. E. van Vliet, B. Nauta, "A 0.2-to-2.0GHz 65nm CMOS Receiver Without LNA Achieving >11dBm IIP3 and <6.5dB NF," IEEE International Solid-State Circuits Conference, pp.222-223, Feb. 2009.

Appendix

2010/2/7

3GPP standard (GSM/UMTS/LTE)

E-UTRA	Uplink (UL) ope	erating band	Downlink (DL)	operating	Duplex	Tx-Rx	Band	
Operating	BS receive		BS transmit		Mode	separation	width	
Band	UE transmit		UE receive					
	F _{UL_low} –	F_{UL_high}	F _{DL_low} –	F_{DL_high}				
1	1920 MHz –	1980 MHz	2110 MHz –	2170 MHz	FDD	190 MHz	60 MHz	UMTS2100 (Japan)
2	1850 MHz –	1910 MHz	1930 MHz –	1990 MHz	FDD	80 MHz	60 MHz	PCS/DCS1900(region2 North America)
3	1710 MHz –	1785 MHz	1805 MHz –	1880 MHz	FDD	95 MHz	75 MHz	DCS/GSM1800 (EU, China, etc)
4	1710 MHz –	1755 MHz	2110 MHz –	2155 MHz	FDD	400 MHz	45 MHz	UMTS1.7/2.1 (AWS, region 2)
5	824 MHz –	849 MHz	869 MHz –	894 MHz	FDD	45 MHz	25 MHz	UMTS850 (GSM850, region 2)
6	830 MHz –	840 MHz	875 MHz –	885 MHz	FDD	45 MHz	10 MHz	UMTS800 (Japan)
7	2500 MHz –	2570 MHz	2620 MHz –	2690 MHz	FDD	120 MHz	70 MHz	UMTS2600 (North America)
8	880 MHz –	915 MHz	925 MHz –	960 MHz	FDD	45 MHz	35 MHz	UMTS900 (E-GSM900) (EU, China, etc)
9	1749.9 MHz –	1784.9 MHz	1844.9 MHz –	1879.9 MHz	FDD	95 MHz	35 MHz	UMTS1700 (Japan)
10	1710 MHz –	1770 MHz	2110 MHz –	2170 MHz	FDD	400 MHz	60 MHz	Extended UMTS1.7/2.1 (region 2)
11	1427.9 MHz –	1452.9 MHz	1475.9 MHz –	1500.9 MHz	FDD	48 MHz	25 MHz	UMTS1500 (Japan, PDC1500)
12	698 MHz –	716 MHz	728 MHz –	746 MHz	FDD	30 MHz	18 MHz	TBD
13	777 MHz –	787 MHz	746 MHz –	756 MHz	FDD	-31 MHz	10 MHz	TBD
14	788 MHz –	798 MHz	758 MHz –	768 MHz	FDD	-30 MHz	10 MHz	TBD
17	704 MHz –	716 MHz	734 MHz –	746 MHz	FDD	30 MHz	12 MHz	TBD
18	815 MHz –	830 MHz	860 MHz –	875 MHz	FDD	45 MHz	15 MHz	TBD
19	830 MHz –	845 MHz	875 MHz –	890 MHz	FDD	45 MHz	15 MHz	TBD
33	1900 MHz –	1920 MHz	1900 MHz –	1920 MHz	TDD		20 MHz	
34	2010 MHz –	2025 MHz	2010 MHz –	2025 MHz	TDD		15 MHz	
35	1850 MHz –	1910 MHz	1850 MHz –	1910 MHz	TDD		60 MHz	
36	1930 MHz –	1990 MHz	1930 MHz –	1990 MHz	TDD		60 MHz	
37	1910 MHz –	1930 MHz	1910 MHz –	1930 MHz	TDD		20 MHz	
38	2570 MHz –	2620 MHz	2570 MHz –	2620 MHz	TDD		50 MHz	
39	1880 MHz –	1920 MHz	1880 MHz –	1920 MHz	TDD		40 MHz	
40	2300 MHz –	2400 MHz	2300 MHz –	2400 MHz	TDD		100 MHz	
3GPP 1	ГS <u>36.1</u> 01	, v9.1.0	, 2009-09		+	GPS.	, DT	V, WLAN, Bluetooth

3GPP TS 36.101, v9.1.0, 2009-09

2010/2/7

Theoretical limit of phase noise

	NMOS VCO	CMOS VCO	Class-C VCO
$v_{\mathrm{out}+}, v_{\mathrm{out}-}$	$0 \sim 2V_{\rm DD}$	$0 \sim V_{\rm DD}$	$V_{\rm DD} \pm \frac{V_{\rm DD} + V_{\rm od}}{1+k}$
$v_{\rm sig}$	$R_{ m p}i_{ m sig}$	$R_{ m p}i_{ m sig}$	$R_{ m p}i_{ m sig}$
$i_{ m sig}$	$\frac{2}{\pi}I_{\rm bias}\sin\omega t$	$\frac{4}{\pi}I_{\rm bias}\sin\omega t$	$I_{\rm bias}\sin\omega t$
I-limit	$I_{\rm bias} < \frac{\pi V_{\rm DD}}{R_{\rm p}}$	$I_{\rm bias} < \frac{\pi V_{\rm DD}}{4R_{\rm p}}$	$\frac{V_{\rm od}}{kR_{\rm p}} < I_{\rm bias} < \frac{V_{\rm DD} + V_{\rm od}}{(1+k)R_{\rm p}}$
$P_{\rm sig(I region)}$	$\frac{2R_{\rm p}I_{\rm bias}^2}{\pi^2}$	$\frac{8R_{\rm p}I_{\rm bias}^2}{\pi^2}$	$\frac{R_{\rm p}I_{\rm bias}^2}{2}$
$P_{\rm sig(V region)}$	$rac{2V_{ m DD}^2}{R_{ m p}}$	$rac{V_{ m DD}^2}{2R_{ m p}}$	
$P_{\rm sig(max)}$ $\frac{2V_{\rm DD}^2}{R_{\rm p}}$		$\frac{V_{\rm DD}^2}{2R_{\rm p}}$	$\frac{1}{2R_{\rm p}} \left(\frac{V_{\rm DD} + V_{\rm od}}{1+k}\right)^2$
PN _(I region)	$\frac{f_0^2}{\Delta f^2} \frac{\mathbf{k}_{\rm B}T}{Q^2} \frac{\pi^2(1+\gamma_{\rm N})}{4R_{\rm p}I_{\rm bias}^2}$	$\frac{f_0^2}{\Delta f^2} \frac{\mathbf{k}_{\rm B}T}{Q^2} \frac{\pi^2 (1 + \frac{\gamma_{\rm N} + \gamma_{\rm P}}{2})}{16R_{\rm p}I_{\rm bias}^2}$	$\frac{f_0^2}{\Delta f^2} \frac{\mathbf{k}_{\rm B}T}{Q^2} \frac{(1+\frac{\gamma_{\rm N}}{k})}{2R_{\rm p}I_{\rm bias}^2}$
$PN_{(V region)}$	$\frac{f_0^2}{\Delta f^2} \frac{k_{\rm B}T}{Q^2} \frac{(1+\gamma_{\rm N})R_{\rm p}}{4V_{\rm DD}^2}$	$\frac{f_0^2}{\Delta f^2} \frac{\mathbf{k}_{\rm B}T}{Q^2} \frac{(1+\frac{\gamma_{\rm N}+\gamma_{\rm P}}{2})R_{\rm p}}{V_{\rm DD}^2}$	
$PN_{(\min)}$	$\frac{f_0^2}{\Delta f^2} \frac{\mathbf{k}_{\rm B}T}{Q^2} \frac{(1+\gamma_{\rm N})R_{\rm p}}{4V_{\rm DD}^2}$	$\frac{f_0^2}{\Delta f^2} \frac{\mathbf{k}_{\rm B}T}{Q^2} \frac{(1+\frac{\gamma_{\rm N}+\gamma_{\rm P}}{2})R_{\rm p}}{V_{\rm DD}^2}$	$\frac{f_0^2}{\Delta f^2} \; \frac{\mathbf{k_B}T}{Q^2} \; \frac{(1+\frac{\gamma_{\rm N}}{k})R_{\rm p}(1+k)^2}{2(V_{\rm DD}+V_{\rm od})^2}$
FoM _(I region)	$\frac{10^3 k_B T}{Q^2} \frac{\pi^2 (1+\gamma_N) V_{DD}}{4 R_p I_{bias}}$	$\frac{10^{3} k_{\rm B} T}{Q^{2}} \frac{\pi^{2} (1 + \frac{\gamma_{\rm N} + \gamma_{\rm P}}{2}) V_{\rm DD}}{16 R_{\rm p} I_{\rm bias}}$	$\frac{10^3 k_B T}{Q^2} \frac{(1+\frac{\gamma_N}{k})V_{DD}}{2R_p I_{\text{bias}}}$
$FoM_{(V region)}$	$\frac{10^3 k_B T}{Q^2} \frac{(1+\gamma_N) R_p I_{\text{bias}}}{4 V_{\text{DD}}}$	$\frac{10^3 k_B T}{Q^2} \frac{(1 + \frac{\gamma_N + \gamma_P}{2}) R_p I_{\text{bias}}}{V_{\text{DD}}}$	_
$FoM_{(\min)}$	$\frac{10^3 k_B T}{Q^2} \frac{\pi (1+\gamma_N)}{4}$	$\frac{10^{3} k_{\rm B} T}{Q^{2}} \frac{\pi (1 + \frac{\gamma_{\rm N} + \gamma_{\rm P}}{2})}{4}$	$\frac{10^{3} k_{\rm B} T}{Q^{2}} \frac{(1 + \frac{\gamma_{\rm N}}{k})(1 + k) V_{\rm DD}}{2(V_{\rm DD} + V_{\rm od})}$

2010/2/7