# A 2.4GHz Fully Integrated CMOS Power Amplifier Using Capacitive Cross-Coupling

#### <u>JeeYoung Hong</u>, Daisuke Imanishi, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan



TDKYD TIECH PursuingExcellence

#### Introduction

- PA design
- Measurement results

#### Conclusion



## Introduction



 PA (Power Amplifier)
 : A circuit used to convert a low-power
 RF signal into a larger signal of significant
 power at transmitter

Π

#### 2.4GHz

- the frequency band which require no license
- various wireless communication standards
  - : WiMAX, WLAN, Bluetooth, etc.



The reason for using capacitive cross-coupling

High reliability of the voltage stress at output end

Using self-biased cascode topology

Area increase by bypass capacitor

**Using Cross-coupling Capacitor** 

Reduce an area of bypass capacitor



ΓΠΚ

#### Schematic



Class-A bias(1<sup>st</sup> stage), Class-AB bias(2<sup>nd</sup> stage)

- Differential topology for achieving 3dB larger P<sub>out</sub>
- Impedance matching by L, C, R



### **Proposed circuit**

- To achieve a high output power
  - Differential topology
  - 2-stage configuration
  - Transformer





ΤΟΚ

The 2nd stage



5

ΓE

Pursuing Excellence

#### Transformer



- Turn ratio=2:1
- Z<sub>out</sub> (50Ω)
   <sup>1</sup>⁄<sub>4</sub> Z<sub>out</sub>(12.5Ω)

$$P_{sat} = \frac{\left(\frac{V_{DD}}{\sqrt{2}}\right)^2}{\left(\frac{1}{4}Z_{out}\right)} = \frac{\left(\frac{2 \times 3.3}{\sqrt{2}}\right)^2}{\left(2 \times \frac{1}{4} \times 50\right)}$$

= 0.8712[W] = 29.4[dBm]



6

Pursuing Excellence

ΓΟΚΥΟ

## Transformer

Coupling coefficient = 0.7
 Maximum Available Gain(MAG) = -1.05 dB
 Conversion efficiency=10<sup>(-1.05dB /10)</sup> × 100 =78.5 %



Measurement and simulation results agree with each other.



ΓΠΚ

## **Proposed circuit**

- To sustain voltage stress
  - Cascode topology
  - Thick gate-oxide transistors
  - Self-biased topology



8

Pursuing Excellence

ΓΠΚ

Out o

V<sub>DD</sub>

#### Self-biased cascode

at the 2<sup>nd</sup> stage







[ Conceptual diagram of voltage waveforms ]

ΓΠΚ

Pursuing Excellence

& Okada Lab.

- Alleviation of voltage v<sub>gd</sub>
- Prevention of transistor's entering to triode region
   Loss of Gain
- <sup>⊗</sup> Area increase by C<sub>bypass</sub>

[1] T. Sowlati, et al., "A 2.4-GHz 0.18-μm CMOS Self-Biased Cascode Power Amplifier," IEEE Journal of Solid-State Circuits, pp. 1318-1324, 2003
Matsuzawa



#### **Amplitude adjustment**

Voltage waveform

10

Pursuing Excellence

ΤΟΚ



#### **Gain degradation**

32 31 30 29 28 27 29 27 26 Standard cascode Using crosscoupling 25 Self-Biased 24 -35 -25 -15 -5 5 Pin [dBm]

Self-biased cascode method degrades the gain compare with standard cascode method using fixed bias voltage.



ΤΟΚ

Pursuina Excellence



C<sub>c</sub> is tuned to v<sub>g</sub> amplitude 18% of v<sub>d</sub> amplitude
 C<sub>gd</sub> is reduced, thus C<sub>bypass</sub> is decreased



#### **Amplitude adjustment 2**



13

Pursuing Excellence

Matsuzawa 👔 & Okada Lab.

ΤΟΚ

# Chip micrograph



Using **MIM** capacitor  $(1 fF/\mu m^2)$ 

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence

14



Bypass capacitor C<sub>bypass</sub> = 14.5pF 8.6pF

**Cross-coupling capacitor C\_{cc} = 1.5 pF** 



#### S-parameter measurement results



Measurement results are roughly in accordance with simulation results



15

**DTECH** Pursuing Excellence

ΓΠΚΥΠ

## **Measuring system**

#### Large signal measurement setup



 Input and output losses are measured separately, and are calibrated from results.



16

Pursuing Excellence

ΤΠΚ

#### Large signal measurement result

#### Near 2.4 GHz



 $\cdot PAE_{max} > 31 \%$ 

 $\cdot P_{sat} > 27 \text{ dBm}$ 

17

**DTECH** PursuingExcellence

ΓΟΚΥΟ

# Large signal measurement result

#### 2.4 GHz





18

**Pursuing Excellence** 

## **Comparison of CMOS PAs**

TOKYO TIECH Pursuing Excellence

> Matsuzawa & Okada Lab.

suingExcellence

|                     | [2]                 | [3]                 | [4]                 | [5]                 | This work           |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Technology          | 90nm                | 130nm               | 180nm CMOS          |                     |                     |
| V <sub>DD</sub>     | 3.3 V               | 1.2 V               | 3.3 V               | 3.3 V               | 3.3 V               |
| Frequency           | 2.4 GHz             |                     |                     |                     |                     |
| P <sub>1dB</sub>    | 27.7 dBm            | 24 dBm              | 24.5 dBm            | 27 dBm              | 25.2 dBm            |
| P <sub>sat</sub>    | 30.1 dBm            | 27 dBm              | -                   | 31 dBm              | 27.7 dBm            |
| PAE <sub>peak</sub> | 33 %                | *32 %               | 31 %@1dB            | 27 %                | 34.3 %              |
| Area                | 4.3 mm <sup>2</sup> | 1.7 mm <sup>2</sup> | 1.7 mm <sup>2</sup> | 2.0 mm <sup>2</sup> | 1.6 mm <sup>2</sup> |

\* Drain efficiency

- [2] D. Chowdhury, et al., "A Single-Chip Highly Linear 2.4GHz 30dBm Power Amplifier in 90nm CMOS," IEEE International Solid-State Circuits Conference, pp. 378-380, 2008
- [3] G. Liu, et al., "Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off," IEEE Journal Of Solid-State Circuits, vol. 43, No. 3, pp. 600-609, Mar. 2008
- [4] J. Kang, et al., "A Single-Chip Linear CMOS Power Amplifier for 2.4GHz WLAN," IEEE International Solid-State Circuits Conference, pp.761-769, 2006
- [5] K. An, et al., "A 2.4 GHz Fully Integrated Linear CMOS Power Amplifier With Discrete Power Control," IEEE Microwave and Wireless Components Letter, vol. 19, No. 7, pp. 479-481, July. 2009

## Conclusion

- Designing 2.4GHz PA with high output power
- Circuit design
  - Using TSMC 0.18 $\mu$ m CMOS process
  - High output power: Differential topology, 2-stage configuration, Transformer
  - Improvement of withstanding voltage: Cascode, Thick gate-oxide transistor, Self-biased cascode
  - Reduce of area for C<sub>bypass</sub>: Capacitive cross-coupling
- Results

- Needed  $C_{bypass} = 14.5 pF 8.6 pF(41\%)$ 



ΓΠΚ