超低エネルギーアナログ・RF回路技術

 と新覞分䵟への展開
An ultra－low energy analog and RF circuit technology for emerging applications

Akira Matsuzawa

Dept．of Physical Electronics
Graduate School of Science and Engineering

Lab. members

Professor: Akira Matsuzawa
Founded in 2004 Assoc. Prof.: Kenichi Okada (RF)
Assist. Prof.: Masaya Miyahara (ADCIDAC)
2 technical staff, 3 secretaries

14 doctor students (3 from corp.)
20 master students
6 undergraduate students some researchers from corp. \quad 50 people

20 Japanese students and 20 foreign students

Focus of Laboratory

Core circuit tech. Applied LSIs and systems

SoCs for mm－wave systems

We now developing SoCs for mm－wave systems

1．Long range：4km Fixed point
 2．Short range：a few meter ：60GHz，3－10 Gbps

：38GHz，0．6－1．0 Gbps

Tokyo Tech
with Sony

Long range mm－wave：Fixed point 38GHz，1Gbps 4
 「ロКソロ FЕЕГ
 Purrevinn Frvallonce

国56 スループット測定系
Campus mm wave network

Equipment with plane Antenna
Networks durability against rain

（e）2008年2月3日（霓。3 センチほど積もる）

Developing 60GHz mm-wave circuits

TロKYロ THELH
Pursuing Excellence
We now developing 60GHz CMOS Transceiver.

VCO (65 nm)

A) Matsuzawa

An ultra－low energy analog and RF circuit technology for emerging applications

Flash ADC architecture

- Expecting highest speed
- Comparator determines the ADC performance

Low offset mismatch and noise are preferable

$$
V_{q}=\frac{V_{F S}}{2^{N}}
$$

$$
\mathrm{V}_{\mathrm{q}}=16 \mathrm{mV}, \text { Mismatch }<3 \mathrm{mV}
$$

Degradation of ENOB

Degradation of ENOB in flash ADC is basically determined by offset mismatch and thermal noise of comparators.

For example; 6bit ADC, ENOB=5.7bit

$$
\mathrm{V}_{\mathrm{q}}=16 \mathrm{mV}, \mathrm{~V}_{\text {off }}<3 \mathrm{mV}
$$

$$
\begin{aligned}
& \triangle E N O B=\frac{1}{2} \log _{2}\left(1+12 \gamma^{2}\right) \\
& \gamma^{2}=\left(\frac{V_{o f f}(\sigma)}{V_{q}}\right)^{2}+\left(\frac{V_{n}(\sigma)}{V_{q}}\right)^{2}
\end{aligned}
$$

$V_{\text {off }}(\sigma)$: Distribution of offset
$V_{n}(\sigma)$: Distribution of noise

FoM of Flash ADC

FoM of flash ADC is determined by energy consumption of unit comparator and the degradation of effective bit.

Reduction of consumed energy and increase of ENOB are very important

$$
\begin{gathered}
F O M=\frac{P_{d}}{f_{s} \times 2^{E N O B}} \approx \frac{E_{c} \cdot f_{s} \cdot 2^{N}}{f_{s} \times 2^{N-\Delta E N O B}}=E_{c} \cdot 2^{\Delta E N O B} \\
E_{c}=C V_{D D}^{2} \quad \quad \mathrm{E}_{\mathrm{c}}: \text { Energy/Comparator }
\end{gathered}
$$

E_{c} is basically proportional to the capacitance

Tradeoff：mismatch and energy consumption

There is a serious tradeoff between mismatch of transistor and gate area．
Larger transistor is required to reduce mismatch voltage and results in increase of gate area and consumed power．

Example

6bit ADC：$V_{\text {off }}<3 \mathrm{mV}$
$\mathrm{E}_{\mathrm{C}}<50 \mathrm{fJ} \rightarrow 0.1 \mathrm{um}^{2} \rightarrow \mathrm{~V}_{\text {off }}=20 \mathrm{mV}$ Needs mismatch compensation $20 \mathrm{mV} \rightarrow 3 \mathrm{mV}$

$$
\begin{aligned}
& V_{\text {offset }}(\sigma) \propto \frac{1}{\sqrt{L W}} \\
& E_{c} \propto C_{c} \propto L W \\
& E_{c} \propto \frac{1}{V_{\text {offset }}^{2}(\sigma)}
\end{aligned}
$$

Mismatch compensation of dynamic comparator 11

The mismatch can be compensated by capacitance and current.

Equivalent circuit of the first stage.

$$
\frac{d t_{d}}{d V_{i}}=\frac{d t_{d}}{d I_{D}} \cdot \frac{d I_{D}}{d V_{i}}=-\frac{V_{D D} C_{L}}{2 I_{D}} \frac{g_{m}}{I_{D}}=-t_{d} \frac{\alpha}{V_{e f f}} \quad \therefore \frac{g_{m}}{I_{D}}=\frac{\alpha}{V_{e f f}}
$$

$$
\therefore \frac{\Delta t_{d}}{t_{d}}=\alpha \frac{\Delta V_{i}}{V_{\text {eff }}} \frac{\Delta t_{d}}{t_{d}}=\left(\frac{\Delta C_{L}}{C_{L}}-\frac{\Delta I_{D}}{I_{D}}\right)
$$

$$
\therefore \frac{\Delta t_{d}}{t_{d}}=\alpha \frac{\Delta V_{i}}{V_{\text {eff }}} \quad \Delta V_{i}=\frac{V_{\text {eff }}}{\alpha}\left(\frac{\Delta C_{L}}{C_{L}}-\frac{\Delta I_{D}}{I_{D}}\right)
$$

Digital calibration method

Resistor ladder type

Current
calibration

Capacitor array type

Binary weighted capacitor array

Effect of analog mismatch compensation 13

We can reduce the mismatch voltage form 14 mV to 1.7 mV at sigma.

M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A Low-

Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov. 2008.

Match with noise simulation

The deduced equation has a good match with simulation.

$$
\delta V_{i n} \approx 2 \sqrt{\frac{k T V_{e f f}}{\alpha C_{L} V_{D D}}}
$$

We deduced this noise equation

Comparison of comparators

Double clock

Conventional
M. van Elzakker, Ed van Tujil, P. Geraedts, D.

Schinkel, E. Klumperink, B.Nauta, "A 1.9uW
4.4fJ/Conversion-step 10b 1MS/s Charge-

Redistribution ADC," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.244-245, Feb. 2008.

Single clock
NMOS+PMOS Double gm

M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov. 2008.

Noise reduction of comparator

Proposed double-tail latch comparator can reduce noise down to 1/3.
$V_{D D}=1.0 \mathrm{~V}, F \mathrm{C}=4 \mathrm{GHz}$, Transient-Noise simulations. (Offset calibration is not used.)
M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A Low-Noise Self-Calibrating

6bit，7mW，250fJ，700MS／s Sub－ranging ADC

Compensation of offset variation with good efficiency
A1．Double－tail latched comparator
A2．Digital calibration by capacitance adjusting
Reference voltage generation of sub－range
B1．Capacitive DAC（C－DAC）
B2．Gate－weighted interpolation

Y．Asada，K．Yoshihara，T．Urano，M． Miyahara and A．Matsuzawa，
＂A 6bit，7mW，250fJ，700MS／s Subranging ADC＂A－SSCC，pp． 141－144，Nov． 2009.
\rightarrow Proposed circuits consume no static power．

Issue of reference voltage generation

Resistor ladder＋SW MUX：

Fine scale

－Static power consumption in resistor ladder
－Trade－off between settling time and power consumption
－Many SW for fine reference
\rightarrow Power consumption is inevitable with high speed operation．

C-DAC

CAD can realize fast operation with low Pd

Advantage :

- Operating as S/H circuit
- No static power consumption ($360 \mu \mathrm{~W} @ 1 G H z$)
- Smaller C_{u} realize faster settling time

$$
\left(\mathrm{t}_{\mathrm{DAC}}=3.4 r_{\mathrm{on}} C_{\mathrm{U}}<80 \mathrm{ps} @ r_{\mathrm{ON}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{U}}=15 \mathrm{fF}\right)
$$

Interpolation comparator

Interpolation can match upper and lower conversion ranges self-consistently.
FADC composed of interpolation comparator
Threshold voltage of i th comparator is the cross-point of $\mathrm{V}_{\mathrm{P}}, \mathrm{V}_{\mathrm{N} i}$.
$\mathrm{V}_{\mathrm{Pi}}, \mathrm{V}_{\mathrm{Ni}}$: interpolated signal of CDAC outputs.
$V_{\mathrm{Pi}}=\frac{(8-i) V_{\mathrm{INPa}}+i V_{\mathrm{INPb}}}{8}, V_{\mathrm{Ni}}=\frac{(8-i) V_{\mathrm{INNa}}+i V_{\mathrm{INNb}}}{8}$

Comparator Circuits

Comparator with offset CAL realizes small area and high accuracy．

Chip photo \＆Layout

6 bit ADC has been realized in a 90 nm 10 M 1 P
CMOS technology with a chip area of $0.13 \mathrm{~mm}^{2}$
430 um

Performance Summary

World lowest FoM ADC！！

Proposed circuits has realized the best power efficiency．

	［1］	$[2]$	$[3]$	$[4]$	$[6]$	This Work
Resolution（bit）	6	6	6	6	6	6
fs（GS／s）	0.8	1.2	0.7	1.25	1	0.7
SNDR（DC／Nyq．	$35 / 32$	$34 / 33$	$31 / 30$	$34 / 28$	$35 / 33$	$35 / 34$
Pd（mW）	12	75	24	32	30	7
Active area（mm	0.13	0.43	0.052	0.09	0.18	0.13
VDD（V）	1.2	1.2	1.2	1.2	$1.2 / 1.0$	1.2
FoM（pJ）	0.44	2.17	1.31	1.22	0.8	0.25
CMOS Tech．（nr	65	130	130	130	90	90
Architecture	Flash	Flash	Pipeline	2b－SAR	Subrange	Subrange

［1］C－Y．Chen，VLSI Circuits 2008.
［2］B－W．Chen，A－SSCC 2008.
［3］F．C．Hsieh，A－SSCC 2008.
［4］Z．Cao，ISSCC 2008.
［6］Y．C．Lien，A－SSCC 2008.

Circuit technology for emerging applications

－Micro medical systems
－Ultra－low power Capacitance to Digital converter
－Can be applied to micro－sensor networks
－Tire pressure sensor
－Nuclear particle detector
－Pixels has an A／D converter in each
－Can be applied to medical imaging devices
－Full digital DCIDC converter
－Low power and high speed and resolution ADC
－Every power supply systems
－On－chip power supply

Capsule to measure bladder pressure

Measure the bladder pressure and send the data in short range（ 15 cm ）

Due to battery life
4 days with total current of 100 uA
All analog and RF circuits consumes only 30uA

SAR Capacitance to Digital Converter

SAR ADC + Capacitive pressure sensor

- Low power
- Can compensate the offset capacitance
- Small area
- Insensitive to operating voltage

Kota Tanaka, Yasuhide Kuramochi, Takashi Kurashina, Kenichi Okada, and Akira Matsuzawa
"A 0.026 mm 2 Capacitance-to-Digital Converter for Biotelemetry Applications Using a Charge Redistribution

Ultra-low power CDC

Improved Capacitance to Digital Converter.

1. 10b SAR like architecture $3 n A$ @ 30 times/sec
2. Self-clocking
3. Single to differential

Tuan Minh Vo,Yasuhide Kuramochi, Masaya
Miyahara,Takashi Kurashina, and Akira Matsuzawa
"A 10 -bit, $290 \mathrm{fJ} /$ conv. Steps, 0.13 mm 22 , Zero-Static
Power, Self-Timed Capacitance to Digital Converter."

Accuracy

Same accuracy as an impedance meter．

New particle detector for nuclear physics 29

Developing new particle detector for nuclear physics

QPIX

A．Matsuzawa，Vu Minh Khoa，M．Miyahara，T． Kurashina，A．Sugiyama，K．Miuchi，and S．Tanaka， ＂A new particle detector LSI Qpix：integrating high speed ADC for each pixel＂，The 1st international conference on Technology and Instrumentation in Particle Physics，March 2009.

$100 \mu \mathrm{~m}$

0．18um CMOS

Basic functions of QPIX

A world first particle detector having an ADC in each pixels.

Experimental setup and measured result
We could detect and measure the nuclear particles

16 pixels
Trajectory of particle

Measuring board

Low voltage LC VCO

Developed 0．2V LC VCO

Class C with start－up circuit

K．Okada，Y．Nomiyama，R．Murakami，and A．Matsuzawa，
＂A 0．114mW Dual－Conduction Class－C CMOS VCO with 0．2V Power Supply，＂ Dig．Symp．VLSI Circuits，pp．228－229，June， 2009.

Fig．2．MOS current waveform of single－and dual－conduction class－ C VCOs under the same signal amplitude（ $A_{\mathrm{t}}=3 / 4 * V_{\mathrm{DD}}$ ，and $\left.V_{\mathrm{th}}=5 / 2 * V_{\mathrm{DD}}\right)$ ．

Fig．3．Voltage waveform of the proposed VCO for drain and both gate voltages．

Performance of 0．2V VCO

Low power of 110uW at 4.5 GHz generation

0.2 V ，

－104dBc／Hz＠1MHz－offset
FoM＝187dBc／Hz

TABLE 1．Performance summary．

	$[2]$	$[1]$	$[1]$	This work	
Technology	$0.13 \mu \mathrm{~m} \mathrm{CMOS}$	$0.18 \mu \mathrm{~m} \mathrm{CMOS}$	$0.18 \mu \mathrm{~m} \mathrm{CMOS}$	$0.18 \mu \mathrm{~m}$ CMOS	
Supply voltage	1.0 V	0.5 V	0.35 V	0.3 V	$\mathbf{0 . 2 \mathrm { V }}$
Power consumption	1.3 mW	0.57 mW	1.46 mW	0.159 mW	$\mathbf{0 . 1 1 4 \mathrm { mW }}$
Oscillation frequency	4.9 GHz	3.8 GHz	1.4 GHz	4.5 GHz	4.5 GHz
Phase noise	$-130 \mathrm{dBc} / \mathrm{Hz}$	$-119 \mathrm{dBc} / \mathrm{Hz}$	$-129 \mathrm{dBc} / \mathrm{Hz}$	$-109 \mathrm{dBc} / \mathrm{Hz}$	$-104 \mathrm{dBc} / \mathrm{Hz}$
	$@ 3 \mathrm{MHz}-$ offset	$@ 1 \mathrm{MHz}-\mathrm{offset}$	$@ 1 \mathrm{MHz}-\mathrm{offset}$	$@ 1 \mathrm{MHz}-$ offset	$@ 1 \mathrm{MHz}$－offset
FoM	$196 \mathrm{dBc} / \mathrm{Hz}$	$193 \mathrm{dBc} / \mathrm{Hz}$	$190 \mathrm{dBc} / \mathrm{Hz}$	$190 \mathrm{dBc} / \mathrm{Hz}$	$187 \mathrm{dBc} / \mathrm{Hz}$
Chip area	$0.50 \mathrm{~mm}^{2}$	$0.23 \mathrm{~mm}^{2}$	$0.76 \mathrm{~mm}^{2}$	$0.29 \mathrm{~mm}^{2}$	
Topology	Class－C（single）	TF	TF	Class－C（dual）	

Development of full digital power supply 34

DC／DC converter uses analog control method．
We have started to develop full digital power supply．

Analog Implementation

Digital Implementation

ADC and PWM for full digital power supply

We have started to develop ADC and PWM for the first step

ADC：12bit，80MSps，5mW

has low power mode and high speed mode Out In

09年に開発開始 10年に開発開始 09年に開発開始

Micro－power systems：PVT issues in digital LSIs 36

Fluctuation of device parameter，stabilization of power supply voltage， and reduction of local heating become serious issues in digital LSIs．

－Performance loes
－Power \＆energy lupact
－Lojie functionalicy
Courtesy
Dr．Vivek De， Intel
－Wemory bit failure
－Burn－in e test cost lompers

Adaptive Power supply voltage

Sakiyama et al., Symp. On VLSI Circuits '97

High efficiency and low noise embedded DC／DC／ 38

High efficiency of 94\％and low noise of 15mVpp．

S．Sakiyama et al．，ISSCC99

