

<u>Rui Murakami</u>, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

2010/09/28

■Background

- Downsizing of LC-VCO
- □Circuit Stacking Beneath the Inductor
- Measurement Result

DSummary

As supply voltage is scaled down, low voltage circuits are needed.

Jitter (Phase noise) of Oscillators

• Ring oscillators are more susceptible to the effect of downscaling the supply voltage.

[1]A. Mazzanti, et al., JSSC 2008 [2]A. Abidi, JSSC 2006

2010/09/28

Ring-VCOs must be replaced with LC-VCOs

[3] K.Okada, et al., VLSIC 2009

To replace Ring-VCO by LC-VCO Increasing chip area will become a problem.

A very small LC-VCO is desired.

The inductor occupies the dominant area in a LC-VCO. It is needed to miniaturize the Inductor

Poor phase noise and high power consumption.

A 20GHz LC-VCO results in a good balance between area and phase noise

Stacked-spiral Inductor

Mono-layer inductor

- Single layer
- Wide line width
- Large diameter
- Low R, High Q
- Large area

- Multi layer
- Narrow line width
- Small diameter
- High R, Low Q
- Ultra low space

Stacked-spiral inductor

2010/09/28

R.Murakami, Tokyo Tech

ΓΠΚ

Pursuina Excellence

When the Inductor is miniaturized, the core-circuit size becomes close to the area of the inductor.

Insert core-circuit under the inductor. Inductive coupling is a problem.

Inductive Coupling

Inductance and quality factor will be degraded by inductive coupling

[4] H.M.Greenhouse, TOPHAP 1974

2010/09/28

To reduce coupling, some layout techniques are applied.

- Slit shaping interconnections
- Placing inductor trace and interconnections orthogonally

kada Lab.

Chip Micrograph(1)

R.Murakami, Tokyo Tech

13

Chip Micrograph(2)

100µm

R.Murakami, Tokyo Tech

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

2010/09/28

Performance Summary

	This Work	[6]	[7]	[3]
Area [µm ²]	484	2597	2400	290000
Power [mW]	1.92	2.8	9.8	0.16
PN	-110@10MHz	-103@1MHz	-101@600kHz	-109@1MHz
Freq.	21GHz	5GHz (20GHz/4)	0.9GHz	4.5GHz
VDD [V]	0.6	1	3.3	0.3
Tech. [nm]	65	90	350	180
FoM	173	173	154	190
FoMA	206	199	182	195
Туре	LC(3D-inductor)	LC(3D-inductor) +Div.	Ring	LC

[6]A.Tanabe, et al., RFIC 2009 [7]I.Hwang, et al., JSSC 2004

[3]K.Okada, *et al., VLSIC* 2009

- A very compact LC-VCO with a stackedspiral inductor and the core-circuit being placed beneath the inductor is proposed.
- To reduce coupling, interconnections are slit shaped and orthogonalized with the coil trace.
- This VCO achieves a chip area of 484μm² equaling ring-oscillator and FoMA of 206dBc/Hz.

Thank you!!

