

A 0.5 V, 1.2 mW, 160 fJ, 600 MS/s 5 bit Flash ADC

<u>Masaya Miyahara</u>, James Lin, Kei Yoshihara and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Motivation
- Design Concept
- Calibration Technique
- Measurement Results
- Conclusions

Motivation

- An ultra-low power ADC is strongly required.
 - Portable applications
 - Ubiquitous wireless sensor system
 - Green IT
- A low voltage operation is required for further technology scaling and low power operation.
 - Analog circuits design becomes more difficult.
 - Increasing V_T mismatch
 - Degradation of gain and distortion of an amplifier
 - The FoM of an ADC should be reduced like digital circuits.
 - Optimizing a speed, resolution and power.
 - Calibration technique for low voltage operation.

Performance of flash ADCs

FoM is deteriorated by the offset voltage of the comparator. Offset voltage should be low at low voltage operation.

FoM vs. VDD

FoM can be significantly reduced by reducing power supply voltage *V*DD.

$$FoM = \frac{f_{c} \times E_{c} \times 2^{N}}{f_{c} \times 2^{N-\Delta ENOB}} = E_{c} 2^{\Delta ENOB}$$
$$E_{c} = C_{c} V_{DD}^{2} + \frac{V_{DD} \cdot I_{c} \exp\left(-\frac{V_{T}}{S}\right)}{f_{c}}$$

- N/

 $E_{\rm c}$:Energy consumption for each comparator and followed logic circuits.

FoM delay product

The FD product suggests the balance between the number of interleaving and decrease of energy consumption.

FD = **FoM** × **Delay**

Excessive number of Interleaving ADC

- Large area
- Driving difficulty
- Reduction of ENOB

Delay time

$$T_{d} = k \frac{V_{DD}}{(V_{DD} - V_{T})^{lpha}}$$

Forward body biasing

Forward body biasing can decrease the delay time (1/2) and can be used easily at 0.5 V operation.

Proposed Calibration Technique

Conventional Calibration (Capacitor DAC base[5])

- MOS varactor sensitivity
- Delay time and power

Timing controller

Proposed Calibration (Timing control base)

 $V_{\rm DD}$ =0.5V, $f_{\rm s}$ =500MHz

	no CAL	Cap CAL [5]	Proposed
V _{off} (σ) [mV]	10.1	5.79	1.49
Ρ _d [μW]	14.5	21.4	24.5
Delay [ps]	365	756	511

[5] V. Giannini, ISSCC2008 8

ADC Structure

90nm 1P9M CMOS process

DNL and INL

(Measurement results are updated because the measurement setup is improved.)

10

SFDR and SNDR vs. Fsample

SFDR and SNDR vs. Fin

12

Performance Summary

Reference #	[7]	[8]	[9]	[10]	This work
Resolution (bit)	5	5	5	5	5
fs (GS/s)	0.5	1.75	1.75	0.06	0.6
SNDR (dB)	26	30	30	26	27
Pd (mW)	5.9	2.2	7.6	1.3	1.2
Active area (mm ²)	0.87	0.017	0.03	-	0.083
Vdd (V)	1.2	1	1	0.6	0.5
FoM(fJ)	750	50	150	1060	,160
CMOS Tech. (nm)	65	90	90	90	/ 90
Architecture	SAR	Fold+Flash	Flash	Flash	/ Flash

FoM_{Fmax} = 160fJ @ 600MSps FoM_{Best} = 110 fJ @ 360MSps

- [7] B. P. Ginsburg, J. Solid-State Circuits 2007.
- [8] B. Verbruggen, ISSCC 2008.
- [9] B. Verbruggen, VLSI Circuits 2008.
- [10] J. E. Proesel, CICC 2008.

Conclusions

- The strategy for low voltage operation is proposed.
 - FoM delay product (FD) is considered for not only low FoM but also high speed operation.
- Low voltage design techniques are proposed.
 - Forward body bias can be used easily at 0.5 V operation. (T_d => 1/2)
 - The timing control based offset calibration technique is proposed. (DNL / INL 2 LSB => 0.5 LSB)
- Proposed ADC has good power efficiency and high speed operation.
 - 600MSps, ERBW = 200 MHz, ENOB = 4.6 bit,

FoM_{Best} =110 fJ/ conv. at 0.5 V supply.

Thank you for your interest!

Masaya Miyahara, masaya@ssc.pe.titech.ac.jp