

OTuan Minh Vo, Yasuhide Kuramochi, Masaya Miyahara, Takashi Kurashina, Akira Matsuzawa

Tokyo Institute of Technology, Japan

Contents

1 TOKYO TIECH Pursuing Excellence

- Background
- Proposed Circuit Architecture
- Simulated and Experimental Results
- Conclusions

Background

- Increasing of researches in in-vivo medical system utilizing capacitive pressure sensor
 - -Small size
 - -High sensitivity
 - Robust structure

TN

Pursuina Excellence

Capacitance to digital convert method 3

- Conventional method
 - Semi digital method [1,2]
 - \odot Power, area of ADC
 - Direct convert method utilizing $\Sigma \Delta$ ADC [3] \odot Power of Opamp
 - Direct convert method utilizing single-ended SAR ADC [4]

© Sensor capacitance variation

• Proposed a direct Capacitance to Digital Converter having differential architecture

[1] P. Bruschi, N. Nizza, and M. Piotto, JSSC, 2007 [2] X. Xu, X. Zou, L. Yao, and Y. Lian, VLSI Circuits, 2008

[3] J. O'Dowd, A. Callanan, G. Banarie, and E. C. Bosch, Sensors, 2005 [4] K. Tanaka, Y. Kuramochi, T. Kurashina, K. Okada, and A. Matsuzawa, ASSCC, 2007

T. M. Vo, Tokyo Tech.

Pursuina Excellence

Proposed Circuit Architecture

TOKYO TIECH PursuingExcellence

Single-ended input but differential operation

- Asynchronous processing [5]
- Highly sensitive dynamic comparator [6]

[5] S. W. M. Chen, and R. W. Brodersen, JSSC, 2006

[6] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, ASSCC, 2008

Operation principle

- Binary search algorithm
- Charge redistribution technique

Store charge into the capacitor DAC and the capacitor sensor

Reduce $V_X - V_Y$ and determine every bit step by step to LSB

DAC

 $V_{\rm ref}$

 $V_{\rm ref}$

T. M. Vo, Tokyo Tech.

GND

Merit of differential architecture

g ΓΠ Pursuina Excellence

- Kickback noise of comparator
- Common-mode voltage fluctuation

 $V_{\rm X} - V_{\rm Y}$ is always fixed during conversion phase

Fluctuation of Common-mode Voltage [mV]

Linearity of the proposed circuit is not affected from the common-mode voltage fluctuation

T. M. Vo, Tokyo Tech.

ΓΠ

Pursuing Excellence

linearity error sufficiently small

> 0.18µm CMOS 1Poly, 6Metal

> Core area 0.13mm²

435µm

Measurement environment

13

Pursuing Excellence

ΤΟΚΥΟ

2009/10/07

Digital code and estimated sensor capacitance vs. input pressure

The result fits with the characteristic of the real capacitive pressure sensor precisely

	[1]	[2]	[4]	This work
Process Technology	0.35µm Bipolar	0.35µm CMOS	0.18µm CMOS	0.18μm CMOS
Supply Voltage	3.3V	1V	1.4V	1.4V
Resolution (ENOB)	N/A	12Bit (10.2)	8Bit (6.83)	10Bit (8.25)
Current Consumption	4.8mA	895nA	169µA	3nA
Conversion Frequency	20kSps	1kSps	262kSps	30Sps
Size of Core	0.2mm ²	1mm ²	0.026mm ² (<i>C</i> _m =3.6pF)	0.13mm ² (<i>C</i> _m =10pF x 2)
Figure of Merit	N/A	760 fJ	5669 fJ	290 fJ

- Realized an ultra-low power capacitance to digital converter
- FoM = Power/(Frequency X 2^{ENOB})

= 290 fJ/conv.step

2009/10/07

T. M. Vo, Tokyo Tech.

15

Pursuing Excellence

ГП

16 TOKYO TIECH Pursuing Excellence

- Ultra-low power sensor interface for in-vivo medical systems utilizing capacitive sensor
- Differential architecture
 - Small linearity error
- Prototype CDC
 - ≻10-bit
 - >0.18 μ m CMOS
 - ≻0.13mm²
 - >3nA @30Sps, FoM : 290 fJ/conv.step
- Precisely measured data

ΓΠΚ

Thank You! votuan@ssc.pe.titech.ac.jp

2009/10/07

