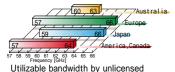
TH-IF-8 CMOS Device Modeling for Millimeter-Wave Power Amplifiers

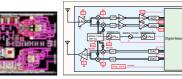
Kota Matsushita, Naoki Takayama, Ning Li, Shogo Ito, Kenichi Okada, and Akira Matsuzawa Tokyo Insutitute of Technology, Japan Email: matsushita@ssc.pe.titech.ac.jp ______

Conclusion

• The simulation results of the 1-stage PA and 4-stage PA are corresponded with the measurement results.


·Measurement results of the 4-stage PA: Gain 20.5 [dB], P_{1dB} 9.9 [dBm]

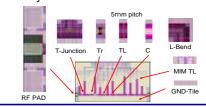
1. Background


· 60GHz band

A wide band can be used by unlicensed.

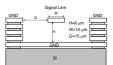
Using for the high-speed wireless communications in the short distance.

· Design of RF frontend


60GHz 2.16GHz-full 4ch direct-conversion by CMOS QPSK 3Gbps & 16QAM 6Gbps & 64QAM 9Gbps

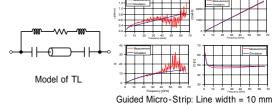
IEEE 802.15.3c conformance

Dynamic power management: <300mW for RF front-end

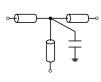

2 . Approach to 60GHz CMOS robustness design

- ·Matching by transmission line
- ·In-house PDK based on measurement
- ·Tile-base layout

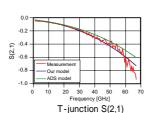
3. Transmission line model


- · Guided Micro-Strip Line was used for the transmission line.
- ·The model was made as , , Q value, and characteristic impedance Z₀ that showed the characteristic of the transmission line were corresponding.

The structure of TL

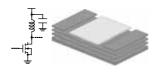


Micrograph of TL



4 . T-junction model

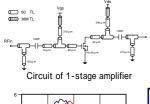
T-jubction model is made from the measurement result. Capacitance is added to the transmission line model.

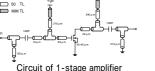

Model of T-junction

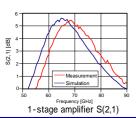
5. Decoupling capacitor model

Model at low frequency

- · Planar unit
- · Model as lumped parameter
- Model at millimeter waveband
- ·Interdigital type ·L and C are distributed and the resonance frequency is improved.
- · Model as transmission line



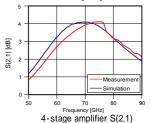

Decoupling capacitor at low frequency


Decoupling capacitor at millimeter waveband

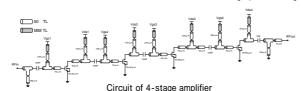
6.1-stage PA

To verify the accuracy of the models, a 1-stage PA is fabricated by using the modeled transistor and transmission line.

Micrograph of 1-stage amplifier


7 . 4-stage PA

·The measurement results and the simulation result almost agree with


Measurement results of the 4-stage PA: Gain 20.5 [dB] P_{1dB} 9.9[dBm]

Micrograph of 4-stage amplifier

This work	65	61.5	20.5	9.9	6.68	144	1.2
[2] ISSCC 2009	45	60	13.8	11	-	٠	1.1
[1] ISSCC 2009	65	60	15.8	2.5	3.95	43.5	1
Reference	CMOS Node [nm]	Freq. [GHz]	Gain [dB]	P1dB [dBm]	PAE [%]	PDC [mW]	VDD [V

