0.2V電源で動作可能な 0.114mWデュアルコンダクション Class-CVCO

〇岡田健一,野見山陽,村上塁,松澤昭 東京工業大学

大学院理工学研究科 電子物理工学専攻

Outline of Presentation

- Motivation
 - Supply voltage scaling
 - Jitter degradation
- Low-voltage VCO's issues
- The proposed Dual-Conduction topology
 - Low-power and Low-phase noise with a very low supply voltage
- Measurement results
- Conclusions

<u>電源電圧のスケーリング</u>

The voltage scaling is required again. Low-voltage circuit design is challenging.

ГП

Pursuíng Excellence

LC-VCO [A.Mazzanti, et al., JSSC 2008]

smaller jitter performance.

リングオシレータのジッタ劣化

Vdd	Туре	Pdc	Phase NoiseJitter+10dB margin		
1.2	LC	1mW	-121.6	0.16ps	
			dBc/Hz-1MHz	(0.074%)	
	Ring	1mW	-91.6	5.0ps	
			dBc/Hz-1MHz	(2.3%)	
0.5	LC	0.17mW	-114.0	0.38ps	
			dBc/Hz-1MHz	(0.67%)	
	Ring	0.17mW	-84.0	12.0ps	
			dBc/Hz-1MHz	(21%)	
		174mW	-114.0	0.38ps	
			dBc/Hz-1MHz	(0.67%)	

6

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence

<u>LC型とリング型の比較</u>

- LC-VCOと分周器を組み合わせることにより、
 面積の縮小と周波数可変範囲の拡大が可能
 単純に消費電力だけを比較すると、高い周波数ほどLC型が低消費電力
 ジッタ性能が厳しい場合は、LC型が有利な周波数帯はどんどん低くまで広がる
- ・面積の問題はなくなる
 - リング型が有利な場合
 - •ジッタ仕様が緩く、周波数が100MHz程度以下の場合
 - LC型が有利な場合
 - それ以外すべて

比較項目

ジッタ、消費電力、周波数可変範囲、回路面積、最高発振周波数

Clock Generation with Low Vdd

- Lowering of supply voltage is required to realize high-speed and low-active-power circuits.
- Jitter will become larger according to the voltage scaling.
- Ring-VCO become infeasible due to too large jitter and too large power consumption.
- To reduce the power consumption of the clock generator, use of LC-VCOs is an unavoidable way in such the low-voltage condition.

Low-Voltage LC-VCO

- Transformer-Feedback VCO can operate with a low supply voltage.
- 0.5V and 0.35V VCOs are reported.

[1] K. Kwok, and H. C. Luong, JSSC 2005

- Class-C VCO achieves 196dBc/Hz of FoM.
- Startup is an issue of Class-C VCO under the low-voltage condition.
 [2] A. Mazzanti, and P. Andreani, JSSC 2008

Summary of This Work

- Sub-0.5V LSI
- A Dual-Conduction topology is proposed for Class-C VCO in this work.
- It is modified to work with a very low supply voltage.
- 0.2V VCO is realized by using a 0.18μm CMOS process with 114μW of power consumption.

Impulse Sensitivity Function (ISF) 11

Ideal Current Conduction

Current Conduction of Class-C VCOs

13

Current Conduction of Class-C VCOs 14

Class-C VCO[2]

15

ΓΠΚ

Π

Pursuing Excellence

2009/7/23

Matsuzawa 👖 & Okada Lab.

Issue of Class-C VCO for Low Vdd ΓΠΚ Vds VDD 0 Vod -Vod Veff $=V_{gbias} - V_{th}$ =Vgs - Vthπ $\pi/2$ -π **-**π/2 Ω \$ [rad.]

Vod has to be small due to the start-up problem, so conduction angle cannot be reduced.

Initial Boosting of Gate Bias

Initial Vgs boosting cannot be expected in a low-Vdd design.

18

Pursuing Excellence

ΓΠΚ

Dual-Conduction Class-C VCO (Proposed) 19 ΓΠΚ Pursuing Excellence VDD for start-up for Class-C operation Ids1 lds2 Vod1>0 Vod2 \cong **0**

Dual-Conduction Current Waveform 20

Comparison of Current Waveforms

21

2009/7/23

(*) Vdd=0.2V, A=0.15V, Vth=0.5V, f0=5GHz, Q=10

Phase Noise vs Vod

23

Pursuing Excellence

ΓΟΚ

Chip Micrograph

24

Pursuing Excellence

ΓΟΚΥΟ

Matsuzawa & Okada Lab.

0.18µm CMOS process

• 670μm x 440μm for core area

Phase Noise Measurement

25

Performance Comparison

	[2]	[1]		This work	
Technology	0.13μm CMOS	0.18µm CMOS	0.18μm CMOS	0.18µm CMOS	
Vdd [V]	1.0	0.5	0.35	0.3	0.2
PDC [mW]	1.3	0.57	1.46	0.159	0.114
fo [GHz]	4.9	3.8	1.4	4.5	4.5
Phase noise [dBc/Hz]	-130 @3MHz	-119 @1MHz	-129 @1MHz	-109 @1MHz	-104 @1MHz
FoM [dBc/Hz]	196	193	190	190	187
Topology	Class-C (single)	Transformer feedback		Class-C (dual)	

[1] K. Kwok, et al., JSSC 2005 [2] A. Mazzanti, et al., JSSC 2008

結論

IKYD TIECH PursuingExcellence

- 0.5V駆動LSIの実現に向けて、クロックジッタの 問題を明らかにした。
- リング型よりもLC型の方が低電圧・低電力動作に有利であることを示した。
- Dual-Conduction構成のClass-C VCOを新規 提案した。
- 従来の低電圧VCOの1/10の消費電力で動作した。0.2V電源電圧までの動作が可能であった。
- 通信用のみならず、クロック発生においてもLC 型のVCOが今後益々重要となる。