Pursuing Excellence

A Comparison Between Varactor-DAC and Capacitor-Bank DCOs

Musa Ahmed, Win Chaivipas, Kenichi Okada, and Akira Matsuzawa Matsuzawa & Okada Lab Tokyo Institute of Technology

Contents

- Introduction
- ADPLL
- DCO Structure
- DCO's fine tuning
- Varactor-DAC
- Capacitor-bank
- Simulation results
- Conclusion

ΤΟΚ

Introduction

- VCO output frequency cannot be accurately predicted.
- A PLL is used to automatically adjust the VCO.
- Most used type is CPPLL.
- Recently ADPLL is gaining more popularity.

General PLL Architecture

Pursuing Excellence

ΓΟΚ

ADPLL

- ADPLL has many advantages over CPPLL.
 - Loop bandwidth can be easily changed on the fly.
 - Intermediate signals can be monitored in real time.
 - DSP can be used to improve performance.
- Digitally Controlled Oscillator is the main part of ADPLL.

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

W. Chaivipas, P. Oh, and A. Matsuzawa, "All-DigitalPhase-Locked Loops, its Advantages and Performance Limitations", International PhD student Workshop, Jul. 2006.

DCO Structure

5

ΤΟΚ

DCO's Fine Tuning

- Issues with the DCO:
 - A lot of capacitors are required to provide fine continuous tuning.
 - Minimum frequency step.
 - Very small capacitors.
 - Parasitic problems.
- Varactor-DAC fine tuning.
 - Small area.
 - Resistor mismatch for higher resolution.

ΓΟΚ

6

Pursuing Excellence

Varactor-DAC

FUKYD TIECH PursuingExcellence

- A 6-bit R/2R ladder DAC was utilized.
- Varactor-DAC configuration is constructed with the following specifications:
 - C = 170 fF 112 fF
 - Q = 32 40
 - R = 4.9 5.9 ohm
- Current Consumption of about 0.2mA.
- 0.34dB added noise

Capacitor-Bank

- 6 switches were used to construct a 6-bit switched capacitor-bank.
- The capacitor-bank has the following specification:
 - C = 171 fF 113 fF
 - Q = 60.5 32
 - -R = 3 8.8 ohm
- Both the varactor-DAC and the capacitor-bank were used to tune the same DCO.

ΓΟΚ

DTECH PursuingExcellence

Capacitance vs. Binary Code

9

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

Simulation DCO Structure

Simulation Results

TOKYO TIECH Pursuing Excellence

11

	Varactor-DAC	Capacitor-Bank
Frequency (GHz)	5.64 ~ 6.14	5.75 ~ 6.16
Tuning Range (MHz)	500	410
Minimum Step (MHz)	5.6 ~ 6.8	5.3
Phase Noise@ 1MHz (dBc/Hz)	109.8 ~ 110.4	108.4 ~ 117
FOM @ 1MHz	173.1 ~ 174.4	171.2 ~ <mark>180.8</mark>
Layout Area (mm ²)	0.00938	0.02587
Current (mA)	8	7.7 ~ 11

Matsuzawa 👘 & Okada Lab.

Layout

12 *токүо тесн*

Conclusion

- Using a varactor-DAC in fine tuning a DCO results in about 2.75 smaller area compared to using a capacitor bank.
- A capacitor-bank configuration has a better phase noise when all switches are on but a worse one when they are off.
- Increasing the resolution requires minimum components in the varactor-DAC configuration.

TOKYO TIECH Pursuing Excellence

14

Thank you!

Q & A!!

