Noise Effects Caused by Settling Time Optimization in Switched-Capacitor Circuit

ドン ター ゴク ヒュイ Dong Ta Ngoc Huy 宮原 正也 Masaya Miyahara 松澤 昭 Akira Matsuzawa

東京工業大学大学院理工学研究科電子物理工学専攻 Department of Physical Electronics, Tokyo Institute of Technology

1 Introduction

Thermal noise represents a major limitation on the performance of most electronic circuits, particularly important in switched-capacitor circuits. In these circuits, the settling time can be improved by optimizing on-resistance of the switch in the feedback path [1]. The purpose of this paper is to present noise effects caused by this settling time optimization method.

2 Settling Time Optimization

Using the model shown in Fig. 1, the settling time of the switched capapacitor amplifier can be reduced by choosing switch resistance as shown in [1]

$$r_{\rm fopt} = mr_{\rm s} + \frac{(m+1)}{g_{\rm m}}.$$
 (1)

Fig. 2 shows the step response of the single-stage amplifier as a function of time for $r_f = 200\Omega$ and $r_f = 400\Omega$. The step response in case of $r_f = 400\Omega$ is faster than $r_f = 200\Omega$. Other parameters are listed below in Table 1.

Table 1 Model parameters					
rs	$g_{ m m}$	т	$C_{\rm L}$	$C_{\rm pi}$	C_0
200Ω	10mS	1	1.3pF	100fF	2.0pF

3 Noise effects in a switched-capacitor amplifier

Assuming that the op-amp is properly compensated, the closed-loop transfer fuction can be approximated by the one-pole expression and the output noise may be calculated as follows:

$$\overline{v_{\text{out}}^2} = \int_0^\infty \left(\overline{v_{\text{in}}^2}\right) \left(\frac{G_0}{1+s\tau}\right)^2 df = \left(\overline{v_{\text{in}}^2}\right) \left(\frac{G_0}{4\tau}\right) \quad (2)$$

where G_0 is the dc gain of the stage, v_{in}^2 is the input noise, and τ is its settling time constant. Here, smaller settling time produces more noise. As shown in Fig. 3, the output SNR of multiply-by-two circuit with 400 mV_{p-p} sine wave input decreased 2dB when using optimum on-resistance switch.

4 Conclusion

The noise increase caused by settling time optimization in a switched-capacitor amplifier was investigated. Polezero cancellation can be used to reduce the settling time effectively, however it increases total noise. A suggested

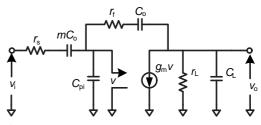


Fig 1 Single-stage amplifier model used for analysis

Fig 2 Step response of the single-stage amplifier

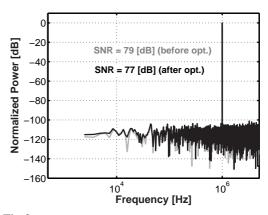


Fig 3 Noise increase caused by settling time optimization

practical solution is to choose an available settling time with the lowest switch on-resistance.

Acknowledgements

This work was partially supported by JST, CREST, MIC, NEDO, and VDEC in collaboration with Cadence Design Systems, Inc.

References

 M. Miyahara and A. Matsuzawa, "The effects of switch resistances on pipelined adc performances and the optimization for the settling time," *IEICE Trans. Electron., vol.E90-C, no.6*, pp. 1165–1171, June 2007.