補間技術とバックグランド 補償技術を用いた8-bit 600-MSps 並列型ADCに関する研究

白 戴和、浅田 友輔、 宮原 正也、 松澤 昭

東京工業大学大学院理工学研究科

- 背景
- 補間技術
- 補償技術
- チップ写真及び測定結果
- まとめ

D. Paik, Tokyo Tech.

1

DTECH PursuingExcellence

ΤΟΚΥΟ

DICE 固定無線アクセス (FWA) への要求

- 有線通信サービスが 地理的条件等から 困難な地域において、 迅速かつ低コストで 地域ブロードバンド 通信インフラの構築 - 日本でのFWA 周波 数帯域 (38 GHz帯)^{[1],[2]}

[1] http://www.tele.soumu.go.jp/j/freq/index.htm

[2] http://www.kobelco.co.jp/column/topics-j/messages/253.html 2009/10/02 D. Paik, Tokyo Tech.

ΤΟΚΥΟΤΙΕΓΗ

FWA向けADCへの要求仕様

- 変換速度
 - ADCへの最大入力信号周波数: 200 MHz
 ADCの必要変換速度: 400 MS/s以上
 高速変換への対応: 並列型(flash)
- 分解能
 - FWAの転送情報量: 800 Mbps
 - 16QAM: 200MHz × 4 = 800 Mbps 7~8 bits
 - 64QAM: 200MHz×6 = 1.2 Gbps 9~10 bits
 ADCの必要分解能: 7 bits以上
- Basebandとのone chip化
 - 微細process: 90-nm process 低電源電圧: 1.2 V

3

ADCの構造

- 増幅器
 - 比較器の入力換算 精度を向上
- 容量結合
 - 1-bit 補間
 - Offset cancel
 - 増幅器
- 比較器
 - 3-bit **ゲー**ト補間
 - Offset 補償回路
- Encoder
 - Bubbling error correction

D. Paik, Tokyo Tech.

ΤΟΚΥΟ ΤΕϹΗ

Pursuing Excellence

5

2009/10/02

D. Paik, Tokyo Tech.

Matsuzawa & Okada Lab.

補間の長所

D. Paik, Tokyo Tech.

Matsuzawa & Chada Lab.

ΤΕΓΗ

Pursuing Excellence

ΓΟΚΥΟ

ゲート補間(比較器)

 入力用MOSのゲート幅を調整して、2種類の信号に 重みを与える

2009/10/02

D. Paik, Tokyo Tech.

Matsuzawa & 👔 & Okada Lab.

8

cellence

- 構造
 - Charge pump型 [3]
- 補償動作
 - 入力をcommon電圧へ接続
 - V_{offset}によって判定結果が1か0
 に片寄る
 - 判定結果をcharge pumpに feedback
 - V_cの値がV_{offset}の影響を打ち消 す方向へ変化

[3] M. Miyahara, et al., in Proc. of ASSCC, pp 269-272, Nov., 2008.

2009/10/02

D. Paik, Tokyo Tech.

Pursuing Excellence

ΓΠΚ

補償回路の効果(測定結果)

[3] M. Miyahara, et al., in Proc. of ASSCC, pp 269-272, Nov., 2008.

2009/10/02

D. Paik, Tokyo Tech.

10

Pursuing Excellence

ΤΟΚ

比較器の補償用信号

- 理想: 各比較器の比較瞬間での入力信号
 - 補間未使用の差動型比較器
 - 1個(入力common電圧)
 - 補間使用の差動型比較器

11

DTECH PursuingExcellence

ΓΟΚ

補間型比較器の補償

・提案:全比較器をcommon電圧基準で補償

- 長所

- 補償用の信号: 1個
- 短所
 - 比較瞬間に入力される信号と補償信号の差によって補償精度が 劣化

12

Pursuing Excellence

& Okada Lab.

ΓΟΚ

- 本ADCでは許容範囲

Bubbling Error Correction

Fig. 15 バッググランド補償による エラー発生とその修正 ・<mark>補償中の比較器</mark>は判定結 果を出力しない

- Bubbling error発生

補償動作中の比較器 - 隣接した二つの比較器の

- 判定結果が一致
 補償中の比較器の出力を隣 接したものの結果に合わせる
 - Bubbling error correction
- <mark>隣接</mark>した二つの比較器の 判定結果が不一致
 - 補償中の比較器の出力を強 制的に0にさせる
 - 1 LSBのerror発生

13

Pursuing Excellence

ΤΟΚ

Bubbling Error Correctionの影響

・補償による雑音増加分

Fig. 16 補償される比較器の数(D)と SNR劣化の関係

- Background補償によって 発生する誤差
 - 変換精度を劣化させる
 - 歪と熱雑音がない場合
 - ・ 量子化雑音と補償による誤 差がSNR劣化の原因

ΓΟΚΥΟ

14

 補償中の数(D)とSNR劣化 を確認

- 雑音で考慮可能

Matsuzawa 👘 & Okada Lab.

2009/10/02

チップ写真と測定結果

1.45 mm

15

ΤΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

性能比較

16

Ref.	Process [nm]	Designed resolution [bits]	Sapmling freq. [MSps]	P _d [mW]	ENOB (DC/Nyquist) [bits]	FoM [fJ/conv.]	Area [mm²]	Туре	Inter- leave
[4]	90	7	1100	46	6.52 / 5.52	910	0.19	Pipeline	used
[5]	65	8	800	30	7.65 / 7.05	280	0.12	Pipeline	used
[6]	90	8 (C4, F4)	770	70	7.18 / 6.67	940	0.605	Subrange	unused
[7]	45	7	2500	50	5.85 / 5.40	480	1	SAR	used
[8]	130		600	30	7.47 / 7.02	340	1.1	SAR	used
[9]	90	10	500	55	8.99 / 8.49	300	0.49	Pipeline	unused
This	90	8	600	98.6	6.87 / 6.74	1540	0.87	Flash	unused

- Flash型は[6]と本研究だけ
 - FoMの問題
 - 分解能が1ビット増えるたび消費電力は2倍に増加
- 本研究はfull flash型にも関わらず、[6]に比べて消費電力及 び占有面積は大きくない
 - 提案された補間技術と補償技術の有効性を意味

Matsuzawa & Okada Lab.

2009/10/02

まとめ

Pursuing Excellence

- 補間の効果
 - 消費電力と面積の減少
 - サンプリング容量値: 13 pF 1 pF
 - 増幅器: 255 個 19 個
- 補償の効果
 - 未使用: ENOB = 6.07 bits
 - 使用: ENOB = 6.74 bits
 - 入力信号周波数 500 MHz、 変換周波数 600 MSps
- 目標仕様との比較
 - 変換周波数 400 MSps以上: 達成
 - 有効分解能 7 bits以上: 今後の課題
 - 補償が不十分

Pursuing Excellence

ΤΟΚΥΕ

- [1] http://www.tele.soumu.go.jp/j/freq/index.htm
- [2] http://www.kobelco.co.jp/column/topics-j/messages/253.html
- [3] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A low-noise self-calibrating dynamic comparator for high-speed ADCs," in *Proc. of ASSCC*, pp 269-272, Nov., 2008.
- [4] C. Hsu, C. Huang, Y. Lin, C. Lee, Z. Soe, T. Aytur, and R. Yan, "A 7b 1.1GS/s reconfigurable time-interleaved ADC in 90nm CMOS," in *Symp. VLSI Circuits Dig. Tech. Papers*, pp. 66-67, Jun., 2007.
- [5] W. Tu, T. Kang, "A 1.2V 30mW 8b 800MS/s time-interleaved ADC in 65nm CMOS," in Symp. VLSI Circuits Dig. Tech. Papers, pp. 72-73, Jun., 2008.
- [6] K. Ohhata, K. Uchino, Y. Shimizu, Y. Oyama, and K. Yamashita, "A 770-MHz, 70-mW, 8-bit subranging ADC using reference voltage precharging architecture," in *Proc. of* ASSCC, pp. 41-44, Nov., 2008.
- [7] E. Alpman, H. Lakdawala, L. R. Carley, and K. Soumyanath, "A 1.1V 50mW 2.5GS/s 7b time-interleaved C-2C SAR ADC in 45nm LP digital CMOS," in *ISSCC Dig. Tech. Papers*, pp. 76-77, Feb., 2009.
- [8] W. Liu, Y. Chang, S. Hsien, B. Chen, Y. Lee, W. Chen, T. Yang, G. Ma, and Y. Chiu, "A 600MS/s 30mW 0.13 μ m CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization," in *ISSCC Dig. Tech. Papers*, pp. 82-83, Feb., 2009.
- [9] A. Verma and B. Razavi, "A 10b 500MHz 55mW CMOS ADC," in *ISSCC Dig. Tech. Papers*, pp. 84-85, Feb., 2009.

