

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

Masaya Miyahara and Akira Matsuzawa

Tokyo Institute of Technology, Japan

- Motivation
- Design Concept
- Proposed Comparator
- Measurement Results
- Conclusions

Motivation

Comparator performance is important in comparator based ADCs.

Comparator offset ⇒Low linearity, Low SNDR

Influence of the offset voltage

ENOB is deteriorated by the offset voltage.

Conventional Offset Cancellation

- Using pre-amplifiers with offset cancellation techniques
 - High voltage gain, wide bandwidth amplifier is needed
 - Consume static power
- Digital calibration techniques [2]
 - Dynamic circuit, no static power
 - Accuracy is limited by the resolution of calibration DAC
 - Calibration is executed before operation

We propose the zero static power dynamic offset cancellation technique.

[2] G. Van der Plas, et al., ISSCC 2006.

- Motivation
- Design Concept
- Proposed Comparator
- Measurement Results
- Conclusions

Double-tail Latched Comparator

M.Miyahara, A-SSCC 2008.

Offset voltage contribution

Each stage's contribution to the offset voltage obtained from Monte-Carlo simulation.

- 90nm CMOS process
- W/L = 1 μ m / 0.1 μ m

•
$$V_{\rm DD} = 1.0 \ {\rm V}$$

Offset voltage contribution

Each stage's contribution to the offset voltage obtained from Monte-Carlo simulation.

Mismatch of the 1st stage
transistors becomes dominant

•The most of the offset voltage of the 1st stage is input transistor's threshold voltages (V_T)

 Input common mode voltage (overdrive voltage of the input transistors) should be kept low

Design Concept

- The V_T mismatch of the input transistors must be canceled.
- The overdrive voltage of the input transistors should be decided without being affected by the input common mode voltage.
- An offset cancellation circuit must be realized without static current for low power operation.

- Motivation
- Design Concept
- Proposed Comparator
- Measurement Results
- Conclusions

Proposed Comparator

• The 1st stage is modified to cancel the mismatch voltage.

 C_{c+} , C_{c-} : Offset canceling capacitor V_b : Bias voltage to set the overdrive voltage of M1' and M2' MR1, MR2 : Switches to reset C_{c+} and

Proposed Comparator Behavior

Simulation Results : V_{cm_i} Variation

Proposed comparator can suppress increase of offset voltage caused by V_{cm} variation.

- 90nm CMOS process
- $V_{\rm DD} = 1.0 \ {\rm V}$
- V_b = 0.1 V
- $f_{c} = 500 \text{ MHz}$
- All transistor channel length is minimized.
- Each transistor channel width is optimized for fast latching.

Simulation Results : V_b Variation

The bias voltage $V_{\rm b}$ had better to be set low. However, too much small overdrive voltage causes a deterioration of the latch speed.

90nm CMOS process

•
$$V_{\rm DD} = 1.0 \ {\rm V}$$

$$V_{\rm cm_{i}} = 0.6 \, \rm V$$

- Motivation
- Design Concept
- Proposed Comparator
- Measurement Results
- Conclusions

Layout

A prototype comparator has been realized in a 90 nm 9M1P CMOS technology with a chip area of 0.0354mm². The core comparator size is only 152 μ m².

Measurement System

The offset voltage is the input voltage at the point that output changes from low to high.

Measurement Results: V_b Variation

The offset voltage can be minimized in case of $V_{\rm b}$ = 0.15 V.

Measurement Results: V_{cm_i} Variation

The offset voltage increases by only 0.4 mV when $V_{\rm cm\ i}$ changes from 0.6 V to 0.9 V.

The measured offset voltage is slightly higher than simulation result.
> Dummy metals affect to mismatch

Performance Summary

Technology	90nm, 1poly, 9metals CMOS
Active Area	5.6µm x 27µm (core comparator)
V _{offset} (σ)	3.8 mV (ENOB = 5.6 bit @ 1Vp-p)
Supply Voltage	1.2 V
Power consumption	4.8mW @ 500 MHz *

* Power consumption includes 64 comparators, I/O buffers and clock drivers. Simulated power consumption of the comparator is 68 μ W/GHz.

- Motivation
- Design Concept
- Proposed Comparator
- Measurement Results
- Conclusions

Conclusion

A low offset voltage dynamic latched comparator using a zero-static power dynamic offset cancellation technique is proposed.

☺ Features

- The proposed comparator consumes no static power.
- Measured results show the input offset voltage is improved from 12.8 mV to 3.8 mV by using proposed technique.
- The offset voltage of the comparator does not change by increasing the input common mode voltage.

Thank you for your interest!

Masaya Miyahara, masaya@ssc.pe.titech.ac.jp