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Single chip transceiver

• Conventionally, PA is fabricated in compound 
semiconductor such as GaAs

• Recently, CMOS PA is under hot debate to realize single 
chip transceiver

Now Future

LNA

CMOS
PA
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Multi-band transmitter
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The target of this work is to cover multiple wireless 
standards with only one CMOS PA
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Isolator-less transmitter

Isolators can be removed if PAs have 50Ω output 
impedance

• Function of isolators
- Maintain PA’s output impedance 50Ω
- Protect PAs from reflected wave

Conventional Proposed

Reducing off-chip 
component
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Challenges of CMOS PA

• Low breakdown voltage of transistor
- In submicron CMOS process, VDD=1~2V
- 2Voltage)(powerOutput ∝

10V amplitude for 1W output power

Solution

• Use thick-oxide transistor 

• Apply cascode topology and share 
output voltage
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Conventional approach
Distributed amplifier

Wideband input and output matching

Large chip area

Small output power due to the absence of impedance 
transformation
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Output impedance tuning 1
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Rs : source impedance (50Ω)

RL : inductor parasitic resistance

Tune C to cancel imaginary part of Zout at arbitrary 
frequency



11

Output impedance tuning 2
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• Tune Rf to match Zout to 50Ω

• Since Zout depends on the 
value of C,  Rf needs to be 
changed according to the 
matching frequency

Rs : source impedance (50Ω)

RL : inductor parasitic resistance

In fact, rds is small… Cascode topology is used
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Schematic of the proposed PA

Variable resistance

Variable capacitance

• Change output matching band by switching C and R

• Differential topology for 3dB larger Psat

• Class-A bias

VDD=3.3V
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State of switches

Frequency
0.9 GHz 3.0 GHz

4.8pF

2.4pF

1.9pF

0.8kΩ 1.1kΩ 1.6kΩ
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Theoretical maximum output power
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• Impedance transformation network can enhance the output 
power, but it is usually narrow-band

• 23dBm Psat can be achieved due to differential topology and 
high VDD
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Voltage stress of switches
• Maximum voltage swing at output node is about VDD=3.3V

• The same voltage is applied to switches when they are off

Thick oxide nMOS is applied as switch
VDD
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Switch biasing

In+
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Parallel 
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VBias1
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Vx

• Large voltage swing makes off-state 
switch on for a moment

• Degrade large signal characteristics 
such as P1dB

Bias to source and drain of off-state 
switches
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Simulation of switch biasing effect 
P1dB=22dBm

P1dB=13dBm

Off-state switches start to be on
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Chip micrograph
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0.
96

m
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PA Core

• 0.18µm CMOS

• Chip was measured using probes and external DC block 
capacitors

DC pads

DC pads

In+

In- Out-

Out+
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Small signal S-parameters
• Differential-mode S-parameter calculated from 4-port 

S-parameter
Solid line : Simulation
Marker : Measurement

0.9~3.0GHz, S22 < -10dB, S21 > 16dB
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Large signal measurement setup
Input loss

Output loss

• Input and output losses are calibrated from results
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Large signal measurement result

@2.4GHz, Band4

P1dB 18.6dBm
Psat 21.7dBm
PAEmax 22.6%
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Pout, PAE v.s. Frequency

• Measured large signal performance in each band and each 
signal frequency

• Psat is larger than 19dBm, and PAE@peak is larger than 
11% at the entire frequency range 
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Comparison of CMOS PAs

Techno
logy

VDD 
[V]

Frequen
cy [GHz]

Psat
[dBm]

PAE@peak 
[%]

Area 
[mm2]

Output 
matching

RFIC ’04
[4]

0.13µm 
CMOS 2.0 2.0 ~ 8.0 7 ~ 10 2 (@1dB) — Wideband

ISSCC ’09
[5]

0.13µm 
CMOS 1.5 0.5 ~ 5.0 14 ~ 21 3 ~ 16

(drain eff.) 3.6 Wideband

T-MTT ’07
[6]

0.18µm 
CMOS 2.8 3.7 ~ 8.8 16 ~ 19 8 ~ 25 2.8 Wideband

ISSCC ‘09
[7]

0.13µm 
CMOS 3.0 1.0 ~ 2.5 28 ~ 31 18 ~ 43 2.56* Wideband

This work 0.18µm 
CMOS 3.3 0.9 ~ 3.0 20 ~ 22 11~ 23 1.03 Tunable

*With distributor
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Conclusion

• Output impedance tuning method utilizing LC-
resonance and resistive feedback is proposed

• 0.18µm fully integrated CMOS PA 
• 0.9-3.0 GHz output matching
• At the entire frequency range, over 19dBm 

output power and over 11% PAE is achieved
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Thank you
for your attention!
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