

A 0.9-3.0 GHz Fully Integrated CMOS Power Amplifier for Multi-Band Transmitters

<u>Daisuke Imanishi</u>, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

- Introduction
- PA design
- Measurement results
- Conclusion

Outline

- Introduction
- PA design
- Measurement results
- Conclusion

Single chip transceiver

- Conventionally, PA is fabricated in compound semiconductor such as GaAs
- Recently, CMOS PA is under hot debate to realize single chip transceiver

Multi-band transmitter

The target of this work is to cover multiple wireless standards with only one CMOS PA

Isolator-less transmitter

- Function of isolators
 - Maintain PA's output impedance 50Ω
 - Protect PAs from reflected wave
- Isolators can be removed if PAs have 50Ω output impedance
 - Conventional

Proposed

Challenges of CMOS PA

- Low breakdown voltage of transistor
 - In submicron CMOS process, V_{DD} =1~2V
 - Output power \propto (Voltage)²
 - 10V amplitude for 1W output power

Solution

- Use thick-oxide transistor
- Apply cascode topology and share output voltage

Outline

- Introduction
- PA design
- Measurement results
- Conclusion

Conventional approach

- Wideband input and output matching
- Large chip area
- Small output power due to the absence of impedance transformation

Output impedance tuning 1

If
$$r_{ds} = \infty$$
,
 $Z_{out} = \frac{R_f + R_s}{g_m R_s + 1} // \frac{1}{j\omega C} // (R_L + j\omega L)$
When $f = \frac{1}{2\pi\sqrt{LC}}$
(Resonance frequency)
 $Z_{out} = \frac{R_f + R_s}{g_m R_s + 1} // \frac{L}{CR_L}$
R_s : source impedance (50 Ω)
R_L : inductor parasitic resistance

Tune C to cancel imaginary part of Z_{out} at arbitrary frequency

Output impedance tuning 2

$$\boldsymbol{Z_{out}} = \frac{\boldsymbol{R_f} + \boldsymbol{R_s}}{\boldsymbol{g_m}\boldsymbol{R_s} + 1} / / \frac{\boldsymbol{L}}{\boldsymbol{C}\boldsymbol{R_L}}$$

- Tune R_f to match Z_{out} to 50Ω
- Since Z_{out} depends on the value of C, R_f needs to be changed according to the matching frequency

R_L : inductor parasitic resistance

In fact, r_{ds} is small... $rac{r_{ds}}{r_{ds}}$ is small...

Schematic of the proposed PA

- Change output matching band by switching C and R
- Differential topology for 3dB larger P_{sat}
- Class-A bias

State of switches

Theoretical maximum output power

- Impedance transformation network can enhance the output power, but it is usually narrow-band
- 23dBm $\rm P_{sat}$ can be achieved due to differential topology and high $\rm V_{DD}$

Voltage stress of switches

- Maximum voltage swing at output node is about V_{DD} =3.3V
- The same voltage is applied to switches when they are off
- Thick oxide nMOS is applied as switch

Switch biasing

Simulation of switch biasing effect

Chip micrograph

- 0.18µm CMOS
- Chip was measured using probes and external DC block capacitors

18

Outline

- Introduction
- PA design
- Measurement results
- Conclusion

Small signal S-parameters

• Differential-mode S-parameter calculated from 4-port S-parameter

Large signal measurement setup

Input and output losses are calibrated from results

@2.4GHz, Band4

Pout, PAE v.s. Frequency

Frequency [GHz]

- Measured large signal performance in each band and each signal frequency
- P_{sat} is larger than 19dBm, and PAE@peak is larger than 11% at the entire frequency range

Comparison of CMOS PAs

	Techno logy	V _{DD} [V]	Frequen cy [GHz]	P _{sat} [dBm]	PAE@peak [%]	Area [mm²]	Output matching
RFIC '04 [4]	0.13μm CMOS	2.0	2.0 ~ 8.0	7 ~ 10	2 (@1dB)		Wideband
ISSCC '09 [5]	0.13μm CMOS	1.5	0.5 ~ 5.0	14 ~ 21	3 ~ 16 (drain eff.)	3.6	Wideband
T-MTT '07 [6]	0.18μm CMOS	2.8	3.7 ~ 8.8	16 ~ 19	8 ~ 25	2.8	Wideband
ISSCC '09 [7]	0.13μm CMOS	3.0	1.0 ~ 2.5	28 ~ 31	18 ~ 43	2.56*	Wideband
This work	0.18μm CMOS	3.3	0.9 ~ 3.0	20 ~ 22	11~ 23	1.03	Tunable

*With distributor

Outline

- Introduction
- PA design
- Measurement results
- Conclusion

Conclusion

- Output impedance tuning method utilizing LCresonance and resistive feedback is proposed
- 0.18µm fully integrated CMOS PA
- 0.9-3.0 GHz output matching
- At the entire frequency range, over 19dBm output power and over 11% PAE is achieved

Thank you for your attention!