

A 9.3MHz to 5.7 GHz Tunable LC-based VCO Using a Divide-by-N Injection-Locked Frequency Divider

<u>Shoichi Hara</u>, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology Japan

Outline

- Background
- Wideband VCO using divide by NILFD
- Schematic and Measurement results
- Summary

Background

Wideband VCO

- 10 MHz to 6 GHz of frequency range
- Lower phase noise
- Lower power operation
- Smaller size
- Quadrature output
- Spurious tones, etc.

Previous work

- Switched-Capacitor Resonator
 - + Reduced Kvco
 - QL is degraded at edge of tuning range
 - Limited Cmax/Cmin (parasitic capacitance limited)
- 1/2 Divider
 - + Continuous wide tuning range
 - Wide tuning range requirement for VCO
 - Poor phase noise
- Dividers, Mixers
 - + Narrow tuning range
 - Large power consumption
 - Spurious tones

[1] Z. Safarian, et al., CICC, Sep. 2008.

Core-VCO : fmax/fmin = 2

Proposed wideband VCO

Narrow required tuning range, No spur, Quadrature output

Core VCO

• Tuning range : 8.0 to 12.0 GHz

Time [s]

Injection Locked Frequency Divider

- Tuning range : 1.3 to 6.0 GHz
- 2-stage differential ILFD is utilized.

Merit: Quadrature output, No Spur, Wide frequency range

Measurement result

Fabricated by 90 nm CMOS Process

VCO measurement summary

	This work	VLSI 2009[2]	RFIC 2009[3]
Architecture	VCO with ILFD	QVCO with mixer and dividers	2VCOs and dividers
Divide ratio	2,3,4,6	2,3,4,5,	2,4,8,16,32
		6,8,10	
Tuning range of	⊥ 20 %	⊥ 20 0/	±33.3 %
core LC-VCO	120 /0	120 /0	(total)
Output freq.	0.009 - 5.7 GHz	1 - 10 GHz	0.1 - 5.0 GHz
Power cons.	5.9 - 11.2 mW	31 mW	19.8 mW
FoM τ	-210 dBc/Hz	-194 dBc/Hz	-209 dBc/Hz
Area	0.05 mm ²	0.29 mm ²	0.22 mm ²

$$FoM_{\rm T} = L(\Delta f) - 20\log\left(\frac{f_o}{\Delta f} \cdot \frac{FTR}{10}\right) + 10\log\left(\frac{P_{\rm VCO}}{1\,{\rm mW}}\right)$$

[2] B. Razavi, *VLSI Circuits*, June 2009.[3] P. Nuzzo, *et al.*, RFIC, June 2009.

Summary and conclusion

- A differential LC-VCO and injection locked frequency divider are utilized instead of a QVCO and a SSBM for the spurious and narrow band and small area.
- The proposed wideband VCO can achieve wide tuning range with sufficient phase noise.

FTR=199% FOMT=-210dBc/Hz

Thank you for your attention!

Circuit schematics

- ILFD generates 1.33 to 6.0 GHz output.
- Lower frequency (under 1.33GHz) can be obtained by using FF dividers.

Simulation result of feedback VCO

Feedback VCO can improve phase noise with smaller power consumption ¹³

Phase noise

Phase noise 2

Oscillation frequency	Phase noise @1MHz offset	FoM	FoM⊤
5.6 GHz (1/2 <i>f</i> o)	-117 dBc/Hz	-184 dBc/Hz	-184 dBc/Hz
3.7 GHz (1/3 <i>f</i> o)	-118 dBc/Hz	-184 dBc/Hz	-184 dBc/Hz
2.8 GHz (1/4 <i>f</i> o)	-120 dBc/Hz	-184 dBc/Hz	-184 dBc/Hz
1.9 GHz (1/6 <i>f</i> o)	-121 dBc/Hz	-184 dBc/Hz	-184 dBc/Hz

Output spectrum

16

Performance comparison

VCO performance

Technology	FUJITSU 90nm CMOS
Supply voltage	1.2 V
Power consumption of VCO core	4.8 - 10.2 mW
Power consumption of ILFD	1.0 - 1.3 mW
Power consumption of FF dividers	- 0.1 mW
Total power consumption	5.9 - 11.2 mW
Tuning range	9.3 MHz - 5.7 GHz
Chip area	250 µm x 200 µm