

60GHz Injection Locked Frequency Quadrupler with Quadrature Output in 65nm CMOS Process

<u>Shoichi Hara</u>, Takahiro Sato, Rui Murakami, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Outline

ΤΟΚ

- Background
- Principle of 60GHz synthesizers
- Design and measurement design
- Summary

Motivation

2

9GHz-BW around 60GHz

Several-Gbps wireless communication

Use of CMOS process

➡ Fab. cost is very important to generalize it. RF&BB mixed chip can be realized.

Our target

suingExcellence

60GHz 2.16GHz-full 4ch direct-conversion by CMOS QPSK 3Gbps & 16QAM 6Gbps & 64QAM 9Gbps IEEE 802.15.3c conformance

Performance of CMOS

4

ΓΟΚ

Advantages

- Mixed with digital components Cost
 - **Digital assist**
- Higher fT and fmax

Weak

- Low gain
- Lossy passive devices
- Larger noise
- Increase the cost as more miniaturization

Performance of passive devices

- Switched capacitor array
 - -Low quality factor

Inductor

- -Small inductance
- -Large loss due to skin effect

Possibilities for quadrature 60GHz LO

· 60GHz VCO with RC polyphase filter

- + Smaller layout area
- Phase mismatch due to wide required frequency range
- Larger loss due to parasitic loading and small R

· 60GHz QVCO

- + Robust and reliable
- Narrower tuning range
- Worse phase noise

· VCO with harmonic doublers

- + Better phase noise
- Larger power consumption

Quadrature LC-VCO 15GHz x 2 x 2 =60GHz or 30GHz x 2 =60GHz

S. Hara, Tokyo Tech.

ΤΟΚΥΟ ΤΕΕΗ

Pursuina Excellence

Injection locked oscillator

7

DTECH Pursuing Excellence

ΓΟΚΥΟ

Using injection locked oscillator

- Phase noise · · · Depends on incident PLL
- Frequency tuning range · · · Required
- Circuit area · · · Larger

Performance of passive devices

Multiple ratio		2	3	4
Output [GHz]		57 - 66		
Input [GHz]		28.5 - 33	19 - 22	14.2 - 16.5
Quality factor of	Inductor	22	22	22
	Capacitor	17	26	35
Capacitance		severe	middle	capable
Phase noise		poor	middle	good
Locking		SO-SO	severe	severe

Multiple ratio is determined by phase noise of incident VCO

ΤΟΚΥΟ ΤΙΕΓΗ

Comparison of injection method

feature:

- Locked at low output voltage
 - Hard to multiple by even number

9

ΤΕΓΕ

Pursuina Excellence

ΓΠΚΥΠ

Parallel-type

feature:

- Locked at cross point
 Able to multiple by even number

Target frequency range : 57 to 66 GHz

Chip micrograph

Fabricated by using 65nm CMOS process

Measured spectrum

S. Hara, Tokyo Tech.

ILO measurement summary

	This work	ISSCC2008[1]
Technology	CMOS 65nm	CMOS 90nm
Power supply	0.6 [V]	1.0 [V]
Injection method	Direct	Parallel (with Polyphase filer)
Multiple ratio	4	3
Input	15 [GHz]	20 [GHz]
Tuning range	56.3 - 63.3 [GHz]	60.0 [GHz] (fixed)
Locking range	60.36 - 60.44 [GHz]	56.5 - 64.5 [GHz]
Power consumption	3.1 - 6.8 [mW]	9.6 [mW]

[1] W. L. Chan, et. al, ISSCC2008 S. Hara, Tokyo Tech.

ΤΟΚΥΟ ΤΕΕΗ

Conclusion

- A transmission-line-based frequency quadrupler using direct injection technique is proposed.
- The proposed ILO can achieve wide tuning range with small power consumption.

ΤΟΚΥ

60GHz channel plan

IEEE802.15.3c

Ref: IEEE 802.15-09-192-003c with draft doc.

ΤΕΓΗ

Pursuing Excellence

ΤΟΚΥΟ

Measurement setup

17

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

Signal generator