

Technology Trend of ADCs

Akira Matsuzawa

Department of Physical Electronics Tokyo Institute of Technology

2008.10.31

Contents

- Issues of pipeline ADCs
- Revolution of SA ADCs
- Fight back of pipelined ADCs
- What determines FoM
- Summary

2

ГПК

Mega-technology trend in ADCs

A major conversion scheme of ADCs is now changing from pipeline to SAcellence

3

ΓΟΚΥΟ ΤΕΕΗ

Issues of pipeline ADCs

(current major ADC architecture)

2008.10.31

Pipeline ADC

TOKYO TIECH Pursuing Excellence

5

Folding I/O characteristics makes higher resolution along with pipeline stages.

Issues of pipeline ADCs

Major issues of pipeline ADCs are caused by OpAmp. Scaled CMOS (90nm) can't realize high OPamp Gain.

 $G_{DC}(dB) > 6N + 10$ 10*b*:70*dB* 12b:82dB

Sub-100nm CMOS

$$G_{DC} \approx \left(\frac{V_A}{V_{eff}}\right)^n \approx \left(\frac{1}{0.15}\right)^n \approx 16 dB \times n$$

ГП

6

Pursuing Excellence

n < 5

2008.10.31

Conversion speed of pipeline ADC

Speed of pipeline ADC is proportional to the OPamp current basical yursuing Excellence

$$\begin{split} f_c &\approx \frac{3GBW_{_close}}{N} \propto \frac{I_{ds}\beta(I_{ds})}{C_L(I_{ds})}\\ GBW_{_close} &= \frac{g_m \cdot \beta}{2} = \frac{g_m}{2} \frac{1}{C_o} \frac{1}{\left(2 + \frac{C_{pi}}{C_o}\right)\left(1 + \frac{C_{po}}{C_o}\right) + \left(1 + \frac{C_{pi}}{C_o}\right)}\\ &= \frac{I_{ds}}{C_o V_{eff}} \frac{1}{\left(2 + \frac{\alpha_{pi}I_{ds}}{C_o}\right)\left(1 + \frac{\alpha_{po}I_{ds}}{C_o}\right) + \left(1 + \frac{\alpha_{pi}I_{ds}}{C_o}\right)} \end{split}$$

A. Matsuzawa, "Analog IC Technologies for Future Wireless Systems," IEICE, Tan on Electronics, Vol. E89-C, No.4, pp. 446-454, April, 2006.

$$g_{m} = \frac{2I_{ds}}{V_{eff}}$$

$$C_{pi} = \alpha_{pi}I_{ds}, \quad C_{po} = \alpha_{po}I_{ds}$$

Capacitances: Signal and parasitic

8

Performance summary

2008.10.31

A. Matsuzawa

9

Speed and power

10

Pursuing Excellence

ΓΠΚΥ

Conversion speed has saturated at 200 MHz Lower mW/MHz is needed for low power operation.

2008.10.31

DTIECH PursuingExcellence

ΤΟΚΥ

Revolution of SA ADCs

(Low FoM ADC architecture)

2008.10.31

SA ADC

Successive Approximation ADC is free from OpAmp design issues and looks suitable for sub-100nm CMOS era.

Require only capacitors, switches, comparator, and logics.

No quiescent current \rightarrow extremely low power

Binary weighted Capaciton an Matsuzawa Lab.

ГП

Performance overview of SA ADCs

SA ADCs become dominant in every performance range. In particular FoM has rapidly lowered.

1/200 during past three years.

Courtesy Y. Kuramochi

ПК

Π

ТЕГЬ **Pursuing Excellence**

& Okada Lab. 🎥 🎞

13

SA ADC: The most simplest ADC

The most simplest ADC architecture:

No static current and the passives determine the SA ADC performance. In contrast, OPamp determines the performance of pipeline ADC.

Sample and hold

Quantization **Comparing between reference** voltage and signal

14

Pursuina Excellence

ΓΠΚ

0 < n < 1

2008.10.31

Recent SA ADC

SA ADC must be the best solution for scaled analog technology. No OpAmp is needed.

> No static power consumption. Higher signal swing and small capacitance

15

& Okada Lab.

ΤΟΚΥ

Analog operation with capacitances

Pursuing Excellence Capacitances can realize analog operation for SAR ADC. No static current is required and higher signal swing can be used.

16

TEFH

ΠΚ

2008.10.31

Results

Pursuing Excellence

ΤΟΚΥΟΤΕ

Matsuzawa & Okada Lab.

17

Amazing small FoM=65fJ/step has been attained.

8bit, 0.3mW at 20MHz

J. Craninckx and G. Van der Plas, "A 65fJ/Conversion-Step 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS," IEEE ISSCC 20007, Dig. of Tech. Papers, pp.246-247, Feb. 2007.

ISSCC06	Arch	Fs	ENOD	Р	FoM	Fo	M includ	les
Paper #	Arcıı.	[MS /s]	ENUD	[mW]	[fJ]	Ref.	Clock	Dec.
3.1	CTΔΣ	40	12	50	300	-	Yes	Yes
3.4	ΔΣ	4.4	12.6	13.8	500	-	No	No
12.1	PL	100	9.4	39	570	-	-	-
12.3	Subr.	50	10.4	30	440	-	-	-
12.4	PL-CBSC	7.9	8.7	2.5	760	-	-	-
12.5	SAR	0.1	10.5	0.025	170	No	No	-
12.7	PL	50	9.2	15	510	-	-	-
31.1	Flash	1250	3.7	2.5	160	-	-	-
31.5	SAR	300	5.3	2.65	220	No	Yes	-
This work	CS-SAR	20	7.8	0.29	65	Yes	Yes	-

World lowest FoM ADC

TOKYO TI Pursuing

Extremely low FoM of 4.4fJ/conv-step. SA ADC has been realized

M. van Elzakker, Ed van Tujil, P. Geraedts, D. Schinkel, E. Klumperink, B.Nauta, "A 1.9uW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.244-245, Feb. 2008.

Simple SA architecture

Multi-step charging can reduce energy more

$$\mathsf{E}_{\mathsf{diss}} = \mathbf{n} \cdot \frac{1}{2} \cdot \mathbf{C}_{\mathsf{eq}} \cdot \left(\frac{\mathsf{V}_{\mathsf{b}}}{\mathsf{n}}\right)^2 = \frac{1}{\mathsf{n} \cdot 2} \cdot \mathbf{C}_{\mathsf{eq}} \cdot \mathsf{V}_{\mathsf{b}}^2$$

Multi-step charging (Adiabatic charging)

A.Matsuzawa

cellence

Comparison with state-of-the-art ADCs

19

ΓΟΚΥΟ ΤΕΕΗ

2008.10.31

Reduction of area of SA ADC

Pursuing Excellence

ΓΠΚΥΠ

20

One issue of current SAR is not small occupied area. This is due to large capacitance ratio; $C_{MSB}/C_{LSB}=2^{N}$ Serial capacitors can reduce this ratio, however parasitic capacitors degrade accuracy. We solved it by calibration.

Effect of digital calibration

ΓΟΚΥΟΤΕ

We can realize 10b ADC with high SFDR of 72dB ADC in world smallest chip size, by using digital calibration technique.

21

Fight back of pipeline ADCs

Optimization of OpAmp in Pipelined ADC

90nm CMOS, near sub-threshold operation, and SC level-shift have realized 10bit 80MHz ADC with 0.8V operation and small power of 6.5mW

Figure 25.1.2: Schematic of two-stage amplifier.

23

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

Results

Excellent FoM has been attained in spite of pipeline ADC.

FoM=200fJ/step 0.08mW/MHz

24

Pursuing Excellence

ΓΟΚΥ

Optimization of V_{eff}

ΤΟΚΥΟ ΤΕΕΗ Optimum V_{eff} is a function of resolution, current, and design rule. **Pursuing Excellence** The lower V_{eff} is recommended for scaled CMOS technology.

> M. Miyahara, A. Matsuzawa, "A Performance Model for the **Design of Pipelined ADCs with Consideration of Overdrive Voltage and Slewing**", IEICE TRANS. ELECTRON, vol. E91-A, No.2, pp.469-475, Feb. 2008.

2008.10.31

A. Matsuzawa

25

Process improvement of MOS transistor

26

FOKYO TIECH Pursuing Excellence

No pocket transistor with low threshold voltage transistor offers

low on-resistance for switches

M. Boulemnakher, E. Andre, J. Roux, F. Paillardet, "A 1.2V 4.5mW 10b, 100MS/s Pipeline ADC in a 65nm CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.250-251, Feb. 2008.

Optimization of MOS transistor

No-pocket MOS transistor can increase output resistance and results in increasing the DC gain.

27

Pursuing Excellence

ΓΠΚΥΠ

Summary of performance

-ΤΟΚΥΟΤΙΞ

Matsuzawa & Okada Lab.

28

This pipeline ADC has attained excellent low FoM compatible with SA ADC

Resolution	10 bit
Sampling speed	100MS/s
Input range	1.0Vppd
Power Consumption	4.5mW
SNDR	59dB
DNL	+/-0.1 LSB
INL	+/-0.2 LSB
Active area	0.07mm^2
Technology	ST CMOS 65nm

FoM= 62fJ/conv.-step

Tech (nm)	VDD (V)	Fs (MHz)	Power (mW)	SNDR (dB)	FOM (pj/step)	References
130	1.2	120	90	57.1	1.25	B.Hemes ISSCC-2004
90	1.2	12	3.3	52.6	0.76	R.Wang ISSCC-2005
90	1.2	100	35	56.9	0.6	G.Geelen ISSCC-2006
90	1.0	100	33	55.3	0.69	K.Honda JSSCC-2007
90	0.8	80	6.5	55	0.17	M.Yoshioka ISSCC-2007
65	1.2	100	4.5	59	0.062	This work

29

Our original work

What determines FoM

OpAmp based design vs. comparator based design

2008.10.31

OpAmp based vs. comparator based

TOKYO TIECH PursuingExcellence

30

SA ADC

2008.10.31

Noise of OpAmp

ΓΠΚ Excellence

 $\beta \rightarrow \beta$

Matsuzawa 👘 🚺

31

Amplification phase

 $V_{nt}^{2} = \frac{kT}{C} + \sum_{i=1}^{N-1} \left(\frac{1}{2^{2}}\right)^{i} \cdot V_{i}^{2} = \frac{kT}{C} + \sum_{i=1}^{N-1} \frac{2^{i}}{2^{2i}} \cdot V_{1}^{2} \approx 2\frac{kT}{C} + \frac{\gamma nkT}{\beta C}$ n=2: Cascode n=3: Folded Cascode

2008.10.31

FoM calculation

32

2008.10.31

Estimated FoM for pipeline ADCs

We are reaching the theoretical limit of FoM

Measured FoM=62fJ/conv., Estimate FoM =24fJ/conv. For 10b ADC

 $V_{dd} = 1.0(V)$ $V_{eff} = 0.15(V)$ $kT = 4.1 \times 10^{-21}$ $\gamma = 2$ n=2 $\beta = \frac{1}{3}$ $f_c = 100 MHz$ **Recent ADC** $V_{dd} = 1.2(V)$ $V_{_{DD}} = 1.0V$ $f_c = 100 MHz$ $C_{o} = 0.4 \, pF$ $P_{d} = 4.5 mW$ SNDR = 59dBFoM = 62 fJ

Resolution	10	12	14
C _o (pF)	0.37	6.0	95
l _{dd} (mA)	1.75	33.6	628
P _d (mW)	1.75	33.6	628
FoM(fJ)	24	116	542

M. Boulemnakher, E. Andre, J. Roux, F. Paillardet, "A 1.2V 4.5mW 10b, 100MS/s Pipeline ADC in a 65nm CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.250-251, Feb. 2008.

> Matsuzawa & Okada Lab.

33

Pursuing Excellence

ΤΟΚΥΟ ΤΕΓ

Analog portion only

SA ADC

SA ADC needs high speed switches, comparators, and logics.

2008.10.31

ГПК

Progress of CMOS Comparator

Small size MOS can be used for small mismatch circuits owing to analog compensation, however static current flows.

Trade off

ΓΠΚΥΠ

Chopper comparator solved this problem

Yukawa, et al., JSC, 1986.

Pursuing Excellence

Comparators

ΤΟΚΥΟ ΤΙΕΕΗ

Dynamic comparators are widely used for not only SA ADCs but also Flash ADCs

Dynamic comparators use the fast voltage fall depended on input voltage difference

V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. van der Plas, and J. Craninckx, "An 820uW 9b 40MS/s Noise Tolerant Dynamic-SAR ADC in 90nm Digital CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.238-239, Feb. 2008.

M. van Elzakker, Ed van Tujil, P. Geraedts, D. Schinkel, E. Klumperink, B.Nauta, "A 1.9uW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.244-245, Feb. 2008.

A. Matsuzawa

Fast voltage fall

36

Issue of comparator for SA ADCs

ΓΟΚΥΟ ΤΕΕΗ A comparator has noise and this results in conversion error.

V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. van der Plas, and J. Craninckx, "An 820uW 9b 40MS/s Noise Tolerant Dynamic-SAR ADC in 90nm Digital CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.238-239, Feb. 2008.

37

Pursuing Excellence

2008.10.31

V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. van der Plas, and J. Craninckx, "An 820uW 9b 40MS/s Noise Tolerant Dynamic-SAR ADC in 90nm Digital CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.238-239, Feb. 2008.

Analysis of comparator noise

Noise of dynamic comparator is mainly determined by internal capacitance. llence Thus low noise comparator consumes dynamic power

2008.10.31

A. Matsuzawa

ΓΟΚΥ

Sensitivity of comparator and FoM of ADC

The larger capacitance is required to realize higher resolution ADGuing Excellence This results in increase of FoM.

Our original work

10

0.1

0.01

0.1

1

$$\delta V_{in} \propto \sqrt{rac{1}{C_L}} \qquad FoM \propto rac{2(N+2)C_L V_{dd}^2}{2^N}$$

Sensitivity of comparator

10

 $C_{I}(fF)$

N=10b

100

 V_{dd} =1.0V, V_{eff} =0.3V, =1, T=300K

FoM of ADC

 $\delta V_{in}(mV)$

A. Matsuzawa

40

Expected FoMs for comparators

FoM due to comparator in not negligibly small. **Recent SA ADCs are reaching the limit.**

Measured FoM=4.4fJ/conv, Expected FoM is 1.4fJ/conv.

Our original work

ΓΠΚΥΠ

41

$$\delta V_{in}^{2} = \frac{4kTV_{eff}^{2}}{C_{L}V_{dd}^{2}} \left(\gamma \frac{V_{dd}}{V_{eff}} + 1\right) \qquad \frac{\delta V_{in}}{q} < 0.15 \rightarrow \delta V_{in}^{2} < 0.3V_{qn}^{2}$$

$$C_{L} > \frac{40kTV_{eff}^{2} 2^{2N}}{V_{dd}^{4}} \left(\gamma \frac{V_{dd}}{V_{eff}} + 1\right) \qquad \therefore \delta V_{in}^{2} < 0.1 \left(\frac{V_{dd}}{2^{N}}\right)^{2}$$

$$C_{L} > 4 \times 10^{-20} \times 2^{2N}$$

$$Q(N_{L} < 0) \in C_{L} V^{2} \qquad f = 100MS/s \qquad \gamma = 1, V_{dd} = 1.0V, V_{eff} = 0$$

 $p_d = 2(N+2)f_c C_I V_{dd}^2$

$$f_c = 100 MS/s$$
 γ

$$V_{dd} = 1.0V, V_{eff} = 0.2V$$

$$FoM = \frac{p_d}{f_c \times 2^{N-0.5}}$$

M. van Elzakker, Ed van Tujil, P. Geraedts, D. Schinkel, E. Klumperink, B.Nauta, "A 1.9uW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.244-245, Feb. 2008.

Resolution	10	12	14
C _L (fF)	42	670	11000
P _d (mW)	0.1	1.9	34
FoM(fJ)	1.4	6.5	30

Comparison of FoM

FoM of SA ADC is one order of magnitude lower than that of pipeline ADC

Pipeline ADC

Resolution	10	12	14
C _o (pF)	0.37	6.0	95
l _{dd} (mA)	1.75	33.6	628
P _d (mW)	1.75	33.6	628
FoM(fJ)	24	116	542

Our original work

ΓΟΚΥΟ

42

Pursuina Excellence

FoM=63fJ/Conv. step

M. Boulemnakher, E. Andre, J. Roux, F. Paillardet, "A 1.2V 4.5mW 10b, 100MS/s Pipeline ADC in a 65nm CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.250-251, Feb. 2008.

SA ADC

Resolution	10	12	14
C _L (fF)	42	670	11000
P _d (mW)	0.1	1.9	34
FoM(fJ)	1.4	6.5	30

FoM=4.4fJ/Conv. step

M. van Elzakker, Ed van Tujil, P. Geraedts, D. Schinkel, E. Klumperink, B.Nauta, "A 1.9uW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.244-245, Feb. 2008.

Technology trend of ADCs

SA ADCs become major, but....

Architecture	Flash	Two-step parallel	Pipeline	SA
Period	7888	88 95	95 1x	06
Technology	Bipolar/CMOS	Bi-CMOS, CMOS	CMOS	CMOS
Parallel/Serial	Parallel	Two-step, Semi-parallel	Serial (Pipeline)	Serial
Base	Comparator	Comparator	Amplifier	Comparator
Gain	No	No (Yes Interpolation)	Yes	No
Sampling	No	Yes	Yes	Yes
	Transistor mismatch	Comparator mismatch	Capacitor mismatch	Capacitor mismatch
Acouroov		Comparator noise	Amplifier gain	Comparator noise
Accuracy		Settling	OpAmp noise	
			Settling	
Spood	Device fT	Reference+Switch	OpAmp GBW	Comparator+Logic
Speed		Comparator+Logic	Switch	Switch
	Interpolation	Redundancy	Redundancy (1.5b)	Serial Capacitor
Design technique	Averaging	Interpolation	Gain boost	Dynamic comparator
	Folding	Averaging	OpAmp sharing	Interleaving
	Dynamic comparator	Gain boost	Calibration	Calibration
		Dynamic comparator		

43

Excellence

ΓΟΚΥΟ

Pursuin

Summary

- Pipelined ADCs, current major ADC architecture are now facing serious issues;
 - Need static current
 - Low OpAmp gain
 - Low voltage operation \rightarrow larger capacitance
 - Scaled device is not suitable for higher resolution
- SA ADCs becomes attractive and looks suitable for scaled CMOS
 - Extremely small FoM
 - Simple, needs only capacitors, switches, comparators, and logics.
 - No static current
 - Free from OpAmp issues
- What determines FoM and which is better.
 - Pipeline: OpAmp SA ADC: Comparator
 - SA is 10x better in FoM, however the difference is not so large.
 - FoM is reaching theoretical limit
 - Attention to the sensitivity of comparator for SA ADC design.

A. Matsuzawa

ΤΟΚ