

Akira Matsuzawa

Department of Physical Electronics Tokyo Institute of Technology

2008.04.25

Contents

2 TOKYDTIECH PursuingExcellence

- Issues of pipeline ADCs
- Revolution of SA ADCs
- Fight back of pipelined ADCs
- What determines FoM
- Summary

Mega-technology trend of ADCs

3

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence Major conversion scheme is now changing from pipeline to SA 1st stage 2nd stage **Pipeline ADC** Cf Cf Op amp Op amp C_{s} C_s Amplify Sample DAC DAC CMP CMP 2nd stage 1st stage Binary weighted Capacitor array Comparator **SA ADC** T С С С 8 16 16 V_{in} —• • • V_{ref} Matsuzawa ada Lab.

4 TOK Pursuina Excellence

Issues of pipeline ADCs

(current major ADC architecture)

Pipeline ADC

TOKYO TIECH Pursuing Excellence

5

Folding I/O characteristics makes higher resolution along with pipeline stages.

1.5-bit/stage Pipeline ADC

Amplification at each stage reduces the input referred thermal noise.1.5b/stage architecture reduces the requirement for
the comparator offset drastically.Lewis et al., JSSC '92
Ginetti et al., JSSC '92

Amplifiers determine ADC performance Comparators don't affect the performance.

Unit conversion stage for 1.5-bit/stage pipeline ADC

6

ΤΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

Issues of pipeline ADCs

ΤΟΚΥΟ ΤΕΕΗ Major issues of pipeline ADCs are caused by OpAmp. **Pursuing Excellence** $G_{DC}(dB) > 6N + 10$ Sub-100nm CMOS 10b:70dB $G_{DC} \approx \left(\frac{V_A}{V_{eff}}\right)^n \approx \left(\frac{1}{0.15}\right)^n \approx 16 dB \times n$ 12b:82dB n < 5V_{dd} $G_{DC} < 80 dB$ $2V_{eff}$ $V_A \approx \frac{I_{ds}}{g_{ds}}$ 350nm V_{sig_max} v_{out-} v_{out}+ $\frac{2V}{V}$ Vin+ Vin-180nm [≥]¥> 3 **V**_{dd}-4V 250nm 130nm 2 90nm $\overline{\tau}$ C_L $2V_{eff}$ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Vds[V] 777 $--90m - 0.13 \mu - 0.18 \mu - 0.25 \mu - 0.35 \mu$

7

Performance model for pipeline ADC

We have developed the performance model for pipeline ADC that can^e treat ^{cellence} technology scaling.

8

ΤΟΚΥΟ ΤΙΕΓΗ

C_{p} and C_{o} for several design rules ΤΟΚΥΟ ΤΙΞΕΗ

 C_p will be reduced by technology scaling, **Pursuing Excellence** however C_o will be increased by operating voltage reduction.

$$W = \frac{2L}{\mu C_{ox} V_{eff}^{2}} I_{ds} \qquad V_{eff} = 0.175 \text{V}$$

$$\begin{split} C_o \geq & 1.66 \times 10^{-19} {\left(\frac{2^N}{V_{sig}} \right)}^2 \\ V_{sig} = & 2 {\left(V_{dd} - 2 \cdot m \cdot V_{eff} \right)} \end{split} \begin{array}{l} \text{Single stage: m=2} \\ \text{Double Stage: m=1} \end{split}$$

C_o vs. design rule m=2 9

Performance summary

10

Speed and power

11

VLSI-DAT A. Matsuzawa

Revolution of SA ADCs

(Low FoM ADC architecture)

SA ADC

Successive Approximation ADC is free from OpAmp design issues *Pursuing Excellence* and looks suitable for sub-100nm CMOS era.

Require only capacitors, switches, comparator, and logics.

No quiescent current \rightarrow extremely low power

13

TOK

Recent SA ADC

SAR ADC must be one of the good solution for scaled analog technology. No OpAmp is needed.

No static power consumption. Higher signal swing and small capacitance

15

Pursuina Excellence

ΤΟΚΥΟ

Analog operation with capacitances

Capacitances can realize analog operation for SAR ADC. *Pursuing Excellence* No static current is required and higher signal swing can be used.

16

ΤΟΚΥΟ ΤΕΕΗ

kada Lab.

Results

TOKYD TIECH Pursuing Excellence

17

Amazing small FoM=65fJ/conv.-steps has been attained.

8bit, 0.3mW at 20MHz

J. Craninckx and G. Van der Plas, "A 65fJ/Conversion-Step 0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS," IEEE ISSCC 20007, Dig. of Tech. Papers, pp.246-247, Feb. 2007.

Paper #	Arcn.	[MS /s]	ENUB					
				[mW]	[fJ]	Ref.	Clock	Dec.
3.1	<u>CTΔΣ</u>	40	12	50	300	-	Yes	Yes
3.4	$\Delta\Sigma$	4.4	12.6	13.8	500	-	No	No
12.1	PL	100	9.4	39	570	-	-	-
12.3	Subr.	50	10.4	30	440	-	-	-
12.4 P	L-CBSC	7.9	8.7	2.5	760	-	-	-
12.5	SAR	0.1	10.5	0.025	170	No	No	-
12.7	PL	50	9.2	15	510	-	-	-
31.1	Flash	1250	3.7	2.5	160	-	-	-
31.5	SAR	300	5.3	2.65	220	No	Yes	-
This work (CS-SAR	20	7.8	0.29	65	Yes	Yes	-

High resolution and high speed SA ADC

To increase the resolution, a pre-amplifier is located in front of a comparator

18

ΤΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

Results

19 ΤΟΚ **Pursuina Excellence** High conversion rate of 40MS/S and low power of 66mW have been attained High ENOB of 13.5bit has been attained FoM=140fJ/conv-steps THD & SNDR vs. Signal Frequency 0.13um CMOS 90.0 1.5V SNDR Supply voltage Input range ±0.9V diff. 88.0 THD 40MHz Sample frequency 86.0 BВ Internal clock 480MHz 84.0 frequency Analog power 49mW 82.0 **Digital power** 17mW 66mW **Total power** 80.0 0.5 0.0 1.5 1.0 Sig Freq [MHz]

VLSI-DAT A. Matsuzawa

Matsuzawa

Okada Lab.

World lowest FoM ADC

Extremely low FoM of 4.4fJ/conv-steps. SA ADC has been realized Pursuing Excellence

M. van Elzakker, Ed van Tujil, P. Geraedts, D. Schinkel, E. Klumperink, B.Nauta, "A 1.9uW 4.4fJ/Conversion-step 10b 1MS/s Charge-Redistribution ADC," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.244-245, Feb. 2008.

Multi-step charging can reduce energy more

$$E_{diss} = n \cdot \frac{1}{2} \cdot C_{eq} \cdot \left(\frac{V_b}{n}\right)^2 = \frac{1}{n \cdot 2} \cdot C_{eq} \cdot V_b^2$$

Simple SA architecture

Multi-step charging (Adiabatic charging)

20

ΤΟΚΥΟ ΤΙΕΓΗ

Summary of performance

Extremely low FoM has been attained!!

	Average	Standard deviation	
SNR (dB)	55.6	0.58	
THD (dB)	-61.1	1.95	
DNL (LSB)	0.49	0.06	
INL (LSB)	2.24	0.18	
SNDR (dB)	54.4	0.47	
ENOB (bit)	8.75	0.08	
E _{conversion} (pJ/conversion)	1.9		
Figure Of Merit	1 10	0.24	
(fJ / conversion-step)	4.42		

21

Pursuing Excellence

ΤΟΚΥΟ

Comparison with state-of-the-art ADCs/

22

Massively parallel high speed SA ADC

160 6b SA ADCs realize 24GS/s conversion

P. Schvan, et. al., "A 24GS/s 6b ADC in 90nm CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.544-545, Feb. 2008.

23

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuing Excellence

Summary of performance and comparison

Packaged ADC performance

Resolution	6 bits
Conversion rate	0.1 - 24GS/s
Input range	1.2V _{p-p} diff.
ENOB	
average cal /	4.2/4.8,F _{in} = 8GHz
cal each freq	3.5/4.1,F _{in} = 12GHz
SFDR	40dB @ 8GHz
	35dB @ 12GHz
Power	1.2W @ 1V and 2.5V
ADC core	4 x 4 mm ²
Process	90nm CMOS

However FoM is about 3pJ/conv. (Large)

24

ΤΟΚ

П

ΓΙΞΓΙ-**Pursuing Excellence**

Fight back of pipeline ADCs

Figure 25.1.2: Schematic of two-stage amplifier.

Results

TDKYD TIECH PursuingExcellence

27

Excellent FoM has been attained in spite of pipeline ADC.

FoM=200fJ/conv.-step 0.08mW/MHz

Process improvement of MOS transistor 28

No pocket transistor with low threshold voltage transistor offers

low on-resistance for switches

M. Boulemnakher, E. Andre, J. Roux, F. Paillardet, "A 1.2V 4.5mW 10b, 100MS/s Pipeline ADC in a 65nm CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.250-251, Feb. 2008.

Lmin (HPA)=0.14um

ΤΟΚΥΟ ΤΙΕΓΗ

Pursuina Excellence

Optimization of MOS transistor

No-pocket MOS transistor can increase output resistance and results in increasing the DC gain.

29

ΤΟΚΥΟ ΤΙΞΕΗ

Pursuing Excellence

Summary of performance

This pipeline ADC has attained excellent low FoM compared with SA ADC

Resolution	10 bit		
Sampling speed	100MS/s		
Input range	1.0Vppd		
Power Consumption	4.5mW		
SNDR	59dB		
DNL	+/-0.1 LSB		
INL	+/-0.2 LSB		
Active area	0.07mm^2		
Technology	ST CMOS 65nm		

FoM= 62fJ/conv.-step

Tech (nm)	VDD (V)	Fs (MHz)	Power (mW)	SNDR (dB)	FOM (pj/step)	References
130	1.2	120	90	57.1	1.25	B.Hemes ISSCC-2004
90	1.2	12	3.3	52.6	0.76	R.Wang ISSCC-2005
90	1.2	100	35	56.9	0.6	G.Geelen ISSCC-2006
90	1.0	100	33	55.3	0.69	K.Honda JSSCC-2007
90	0.8	80	6.5	55	0.17	M.Yoshioka ISSCC-2007
65	1.2	100	4.5	59	0.062	This work

30

Excellence

TDK

Pursui

Our original work

What determines FoM

OpAmp based design vs. comparator based design

OpAmp based vs. comparator based

TOKYD TIECH PursuingExcellence

32

Noise of OpAmp

Amplification phase

 $\begin{array}{ll} \text{n=2: Cascode} \\ \text{n=3: Folded Cascode} \end{array} \quad \nu_{nt}^{2} = \frac{kT}{C_{o}} + \sum_{i=1}^{N-1} \left(\frac{1}{2^{2}}\right)^{i} \cdot \nu_{i}^{2} = \frac{kT}{C_{o}} + \sum_{i=1}^{N-1} \frac{2^{i}}{2^{2i}} \cdot \nu_{1}^{2} \approx 2\frac{kT}{C_{o}} + \frac{\gamma nkT}{\beta C_{L}} \end{array}$

Matsuzawa 🔒 🏀 🏀

33

Pursuina Excellence

ΤΟΚ

FoM calculation

OpAmp consumes power, however operating frequency is just f_c and total power is only 2.5x of 1st OpAmp.

$$\begin{split} \nu_{nt}^{2} &= 2\frac{kT}{C_{0}} + \frac{\gamma nkT}{\beta C_{L}} \approx \left(2 + \frac{\gamma n}{\beta}\right)\frac{kT}{C_{0}}\\ V_{qn}^{2} &= \frac{1}{3}\left(\frac{q}{2}\right)^{2} = \frac{1}{3}\left(\frac{V_{dd} - 2V_{eff}}{2^{N}}\right)^{2} \quad if \quad V_{nt}^{2} = V_{qn}^{2} \quad \left(2 + \frac{\gamma n}{\beta}\right)\frac{kT}{C_{o}} < V_{qn}^{2}\\ C_{0} &> \left(2 + \frac{\gamma n}{\beta}\right)\frac{kT}{V_{qn}^{2}} \end{split}$$

$$f_{close} > \frac{Nf_c}{3} \quad \therefore \frac{g_m\beta}{2\pi C_L} > \frac{Nf_c}{3} \therefore g_m > Nf_c \frac{2\pi}{3\beta} C_o \quad g_m \approx \frac{2I_{ds}}{V_{eff}}, \quad I_{ds} > Nf_c \frac{2\pi}{3\beta} \frac{V_{eff}}{2} C_o$$

$$P_d \approx 2.5 \times (2 \times 2 \times I_{ds} \times V_{dd}) = 10I_{ds}V_{dd}$$

$$FoM = \frac{P_d}{f_c \times 2^{N-0.5}}$$

34

Pursuing Excellence

ΤΟΚΥΟ

Estimated FoM for pipeline ADCs

We are reaching the theoretical limit of FoM

 $V_{dd} = 1.0(V)$ $V_{eff} = 0.15(V)$ $kT = 4.1 \times 10^{-21}$ $\gamma = 2$ n=2 $\beta = \frac{1}{3}$ $f_c = 100 MHz$ **Recent ADC** $V_{dd} = 1.2(V)$ $V_{pp} = 1.0V$ $f_c = 100 MHz$ $C_{o} = 0.4 \, pF$ $P_{d} = 4.5 mW$ SNDR = 59dB

FoM = 62 fJ

Resolution 10 12 14 C_o(pF) 0.37 6.0 95 1.75 33.6 $I_{dd}(mA)$ **628** P_d (mW) 1.75 33.6 628 FoM(fJ) 24 116 542

M. Boulemnakher, E. Andre, J. Roux, F. Paillardet, "A 1.2V 4.5mW 10b, 100MS/s Pipeline ADC in a 65nm CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.250-251, Feb. 2008.

> Matsuzawa & Okada Lab.

2008.04.25

VLSI-DAT A. Matsuzawa

35

Pursuing Excellence

ΤΟΚΥΟ ΤΕΓΗ

Analog portion only

SA ADC

TOKYO TIECH Pursuing Excellence

36

SA ADC needs high speed switches, comparators, and logics.

Comparators

ΤΟΚΥΟ ΤΙΞΕΗ

38

Dynamic comparators are widely used for not only SA ADCs but also Flash ADCs

Issue of comparator for SA ADCs

A comparator has noise and this results in conversion error.

FOKYO FIECH Pursuing Excellence

39

V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. van der Plas, and J. Craninckx, "An 820uW 9b 40MS/s Noise Tolerant Dynamic-SAR ADC in 90nm Digital CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.238-239, Feb. 2008.

2008.04.25

V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. van der Plas, and J. Craninckx, "An 820uW 9b 40MS/s Noise Tolerant Dynamic-SAR ADC in 90nm Digital CMOS," IEEE ISSCC 2008, Dig. of Tech. Papers, pp.238-239, Feb. 2008.

Expected FoMs for comparators

FoM due to comparator is not negligibly small. Operating frequency is $(N+2)f_c$ and power increases with N. Recent SA ADCs are reaching the limit.

$$p_d = 2(N+2)f_c C_L V_{dd}^2$$
$$FoM = \frac{p_d}{f_c \times 2^{N-0.5}}$$

$$C_L > 4 \times 10^{-20} \times 2^{2N}$$

 $f_c = 100MS/s$

$$\gamma = 1, V_{dd} = 1.0V, V_{eff} = 0.2V$$

ΤΟΚΥΟ

Resolution	10	12	14
C _L (fF)	42	670	11000
P _d (mW)	0.1	1.9	34
FoM(fJ)	1.4	6.5	30

41

Pursuina Excellence

Redundant architecture

Combination of Large and small comparators and one redundant conversion increase ADC performance without serious FoM degradation.

Good ENOB improvement with Noise Tolerant correction

42

ΤΟΚΥΟ ΤΕΕΗ

Technology trend of ADCs

TOKYD TIECH Pursuing Excellence

43

SA ADCs become major, but....

Architecture	Flash	Two-step parallel	Pipeline	SA
Period	7888	88 95	95 1x	06
Technology	Bipolar/CMOS	Bi-CMOS, CMOS	CMOS	CMOS
Parallel/Serial	Parallel	Two-step, Semi-parallel	Serial (Pipeline)	Serial
Base	Comparator	Comparator	Amplifier	Comparator
Gain	No	No (Yes Interpolation)	Yes	No
Sampling	No	Yes	Yes	Yes
	Transistor mismatch	Comparator mismatch	Capacitor mismatch	Capacitor mismatch
A a a uma a <i>u</i>		Comparator noise	Amplifier gain	Comparator noise
Accuracy		Settling	OpAmp noise	
			Settling	
Snood	Device fT	Reference+Switch	OpAmp GBW	Comparator+Logic
Speed		Comparator+Logic	Switch	Switch
	Interpolation	Redundancy	Redundancy (1.5b)	Serial Capacitor
	Averaging	Interpolation	Gain boost	Dynamic comparator
Design technique	Folding	Averaging	OpAmp sharing	Interleaving
	Dynamic comparator	Gain boost	Calibration	Calibration
		Dynamic comparator		

Summary

- Pipelined ADCs, current major ADC architecture are now facing serious^{g Excellence} issues;
 - Low OpAmp gain
 - Low voltage operation \rightarrow larger capacitance
 - Scaled device is not suitable for higher resolution
- SA ADCs becomes attractive and looks suitable for scaled CMOS
 - Extremely Low FoM
 - Simple; needs only capacitors, switches, comparators, and logics.
 - Free from OpAmp issues
- Pipelined ADCs have fight backed
 - Same FoM as SA ADC, owing to process improvement
- What determines FoM and which is better.
 - Pipeline: OpAmp SA ADC: Comparator
 - SA is better in FoM, however the difference is not large.
 - Attention to the sensitivity of comparator for SA ADC design

