

A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs

<u>Masaya Miyahara</u>, Yusuke Asada, Daehwa Paik and Akira Matsuzawa

Tokyo Institute of Technology, Japan

- Motivation
- The Calibration Scheme
- Proposed Comparator
- Measurement Results
- Conclusions

Motivation (I)

Comparator performance is important in comparator based ADCs. Vin O **Comparators** Comparator +VFS Vin O ENCODER DAC N bit Successive Approximation [hermomete **Digital** Binary Register Out N bit N cycle/conv. -VFS **Comparator offset Comparator noise** ⇒Low SNR \Rightarrow Low linearity

⇒Low SNDR

3

Motivation (II)

1bit down @ $V_{offset}(\sigma) = 1/4$ LSB 1bit down @ $V_n(\sigma) = 1/2$ LSB

Comparator Design Challenges

- Transistor mismatch
 Transistor Noise
 Parasitic capacitance
- Circuit topology
 Transistor size

- Motivation
- The Calibration Scheme
- Proposed Comparator
- Measurement Results
- Conclusions

Design Concept

Pre-amplifiers are used to reduce to offset voltage. However...

> •High DC gain (> 10x) => Difficult in deep sub-micron CMOS

•Wide bandwidth (> 1 GHz) => Large power consumption

Offset calibration techniques are more suitable in deep sub-micron CMOS design.

Conventional Offset Calibration

Advantage: Dynamic circuit, no static power. Drawbacks: Accuracy is limited by the resolution of C_{cal}. Latch speed is slowed down.

Proposed Offset Calibration

Advantages: During the conversion mode, no static power. Wide compensation range. The resolution is variable by changing *I*_{cp}. Drawback: Charge pump circuit must refresh C_H frequently.

- Motivation
- The Calibration Scheme
- Proposed Comparator
- Measurement Results
- Conclusions

Double-Tail Latched Comparator

The 2nd latch stage has to detect ΔV_{Di} in a very short time.

11

Proposed Comparator

Proposed comparator uses Di nodes voltage instead of CLK for 2nd stage latch timing.

Proposed Comparator Advantages¹³

•High 2nd latch G_m (~2x) => less noise from 2nd latch

•Wide area input transistor => less offset from 2nd latch

Less clock driving

Unaffected by clock skew

14 **Proposed Comparator with Calibration**

- All transistor channel length is minimized.
- Each transistor channel width is optimized for fast

Comparison : Offset Voltage

90 nm CMOS, 100 times Monte Carlo simulations. Same size transistors are used in each comparators.

Conventional $V_{offset}(\sigma) = 21.5 \text{ mV}$

Proposed (CAL OFF) $V_{offset}(\sigma) = 13.5 \text{ mV}$

Proposed (CAL ON) $V_{offset}(\sigma) = 1.3 \text{ mV}$

Offset voltage 1/16

Comparison : Noise

- Motivation
- The Calibration Scheme
- Proposed Comparator
- Measurement Results
- Conclusions

Layout

A prototype comparator has been realized in a 90 nm 10M1P CMOS technology with a chip area of 0.0348mm²

0.29 mm

Measurement System

Measurement Results : Offset

Measurement Results : Noise

 V_{DD} =1.0 V, Offset Calibration is not used.

Performance Summary

Technology	90nm, 1poly, 10metals CMOS
Active Area	120µm x 290µm (64 comparators)
V _{offset} (σ) CAL OFF/ON	13.7mV / 1.69mV
Input eq. noise V _n (σ)	0.7mV @ F_{c} =600MHz, V_{cm} =0.5V
Supply Voltage	1.0V
Power consumption	40 μW/GHz (20 fJ/conv.)

- Motivation
- The Calibration Scheme
- Proposed Comparator
- Measurement Results
- Conclusions

Conclusion

A low offset voltage, low noise dynamic latched comparator using a self-calibrating technique is proposed.

© Features

•The new calibration technique does not require any amplifiers for the offset voltage cancellation and quiescent current.

•It achieves low offset voltage of 1.69 mV at 1 sigma, while 13.7 mV is measured without calibration.

•A low input noise of 0.6 mV at 1 sigma, three times lower than the conventional one.

Thank you for your interest!

Masaya Miyahara, masaya@ssc.pe.titech.ac.jp