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Introduction 

 
Due to miniaturization of CMOS process, many kinds of commercial radio ICs have been 
realized by Si CMOS. On the other hand, it has become a difficult challenge to characterize 
on-chip inductors because of eddy-current loss caused by Si substrate, and use of inaccurate 
models might involve degradation of circuit performance. Thus, accurate modeling of on-
chip inductors is a very important issue in high-frequency circuit design [1].  
This paper reports a new method for numerical analysis of symmetric differential inductors. 
Ideality of symmetric differential inductors is an important factor to design differential 
circuits. As previous work, asymmetry can not be evaluated accurately. In [2], difference 
between Y11 and Y22 is used to estimate asymmetric properties of differential inductors. 
However, the difference is involved in only difference in shunt parasitic components. In [1], 
three-port modeling of differential inductors is presented. A 2-π-shape equivalent circuit 
model is employed in [1], and each circuit parameter is extracted by numerical optimization. 
Therefore, left-right asymmetry can not be evaluated accurately by the method in [1]. In this 
work, the matrix-decomposition technique is employed [3]. Left- and right-half inductances 
can be calculated by 3-port S-parameters as well as mutual inductance. 
Asymmetry of on-chip differential inductors is often caused by a surrounded ground loop, 
which is sometimes unavoidable due to requirement of layout shrinking. This paper also 
presents simulated and measured results for analyzing the asymmetric ground loop as an 
application of the matrix-decomposition technique, which are applied to 1-, 2-, and 3-turn of 
symmetric inductors. 
 

Matrix-Decomposition Technique 
 

In this section, the matrix-decomposition technique [3] and its application to the analysis of 
differential inductors are explained. 
 
A. Derivation of matrix Yc 
Figure 1(a) shows an equivalent circuit of differential inductors, which consists of core, shunt, 
and lead parts [4], [5]. The core part expresses self and mutual inductances with parasitic 
resistance and capacitance, which are characterized by zn. The core part is also expressed by a 
matrix Yc. The shunt part characterizes ILD and Si substrate, and it is expressed by a matrix 
Ysub. The lead part characterizes lead lines, which are parasitic components here. The lead 
part is also expressed by matrix Yopen and Zshort. These matrices can be combined by the 
following equations. 
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where admittance matrix Ymeas is converted from measured S-parameter. To decompose each 
part of multi-port inductor in Fig. 1(a), first the matrix Ysub is calculated. The matrix Ysub can 
be expressed by admittances ysubn as follows. 
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When va = v1 = v2 = v3, no current flows into zn shown in Fig. 1. Here, va is arbitrary number. 
The following equation is derived from Eqs.(2) 
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Therefore, each ysubn in Ysub can be calculated by the following equation. 
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B. Conversion of matrix Yc to Zcore 
Figure 2 shows the core part of the entire equivalent circuit in Fig. 1, which is expressed by 
the matrix Yc.  
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In this case, we need each parameter of zn and Mnm, so the matrix Yc is converted into an 
impedance matrix Zcore. The matrix Zcore is defined by the following equations. 
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where vectors v, i, vz, and iz are defined as shown in Fig. 1(b). Each element of the matrix 
Zcore expresses self and mutual components directly. In this case, M21 is equal to M12. Here, 
current direction of iz2 is opposite to iz1 while they have the same direction in the original 
matrix-decomposition technique [3]. It is because error sensitivity of port 2 is larger than the 
others, and current direction is symmetrically defined as shown in Fig. 1(b) to avoid 
asymmetric error in measurements.  
Zcore can be derived from Yc. Rank of the matrix Zcore is 2, and the matrix Yc consists of the 
same components as shown in Fig. 1(b). Thus, rank of Yc is also 2 although Yc is a 3×3 matrix. 
The matrix Yc is not a regular matrix, and it does not have an inverse matrix. In this work, 
converting matrices A and B are utilized, which are also not a regular matrix.  
The converting matrices A and B are derived by the following procedure. Vectors i and v are 
converted into vectors iz and vz by the following equations. 
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Here, i1 + i2 + i3 is equal to 0 as shown in Fig. 1(b), so i2 in Eq. (8) is also expressed by -i1-i3 
as an example. Thus, matrix B has four solutions. However, the first one is better from the 
view point of error sensitivity. 
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Eqs. (6)(8)(9) are substituted into Eq. (7), and the following equations are obtained. 

ccoreBYZA =   (11) 

Matrices A and B are not regular matrix. Matrix Zcore is 2×2 matrix. Yc is shrunk to Zcore by 
pseudo-inverse matrix A+. For example, A+ can be defined as follows. 
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Finally, the following equations are derived. Zcore is expressed by Eq. (14). The self and 
mutual inductances are calculated from the measured S-parameter. 
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Simulation and Experimental Results 

 
In this section, the proposed method is performed for simulation and measurement results. 
Figure 2 shows a simulation model to evaluate the asymmetric ground loop. The asymmetry 
is realized by moving the left-side ground plane as shown in Fig.2. Im[z1]/ω and Im[z2]/ω are 
utilized to evaluate left-right asymmetry. Figure 3 plots the mismatch between left- and right-
half inductances as a function of ∆x. The mismatch of 2-turn symmetric inductor is smaller 
than 1- and 3-turn. When the number of turn is even, left- and right-half components are 
equally influenced by surrounding layout. Thus, the mismatch between left- and right-half 
inductances is canceled. Next, measurement results are shown. Figure 4 shows 
microphotographs of differential inductors. Figure 4(a) shows ideal one, which has a 
symmetric structure except for the under path at the cross-point. Figure 5 shows inductances 
derived from measured S-parameters with the proposed method. Figure 5(a) shows 
inductances of the ideal structure, and there is no large difference in the inductances. In Fig. 
4(b), left side ground plane is closer to the spiral part, and 4% mismatch exists as shown in 
Fig. 5(b). 
 

Conclusions 
 
In this paper, the numerical analysis using the matrix-decomposition technique is proposed to 
evaluate left-right asymmetry in differential inductors. Both left- and right-half components 
can be calculated by the analythical equations without parameter extraction using numerical 
optimization, so difference between the components can be accurately evaluated. 
 

References 
 

[1] K. Okada, et al., EuMC, Oct. 2007, pp. 520– 523. 
[2] Y. Aoki, et al., EuMC, Oct. 2007, pp. 339–342. 
[3] T. Ito, et al., ARFTG, June 2007, pp. 212–215. 
[4] J. R. Long, et al., JSSC, vol. 32, no. 3, pp. 357–369, Mar. 1997. 
[5] A. M. Niknejad, et al., JSSC, vol. 33, no. 10, pp. 1470–1481, Oct. 1998. 

 
 
 
 
 



Figures 
 

Zshortshort Yopenopen

ysub1 ysub2ysub3

1 23

M2323

z1 z2 2'3'

Ysub

Yc

Ymeas

M1212

YleadZlead

1'

M12

    

21 3i1 i2i3v1 v2v3

iz1 iz2

vz1 vz2

Yc
M1212

z1 z2M12

 
(a) expressed core, shunt, and lead parts (b)core part 

Figure 1. Equivalent circuit of a differential inductor. 
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Figure 2. Simulation model.         Figure 3. The mismatch between  

 left- and right-half inductances. 
 

     
  (a) ideal    (b) asymmetric 

Figure 4. Micrograph. 
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Figure 5.  Left- and right-half inductance derived from measurement. 


