Pursuing Excellence

A Three-Stage 60GHz CMOS LNA Using Dual Noise-Matching Technique for 5dB NF

<u>Ning Li¹, Kenichi Okada^{1,} Toshihide Suzuki²,</u> Tatsuya Hirose² and Akira Matsuzawa¹

1. Tokyo Institute of Technology, Japan 2. Advanced Devices Lab, Fujitsu Laboratories Ltd, Japan

2008/12/18

Background

60GHz LNA Design Method

Circuit and Simulation Results

Conclusions

Ning Li, Tokyo Tech

ΤΟΚ

Background

Short rangeGood isolation

- 7 GHz unlicensed band at 60 GHz
- Gbps data transfer

Reference:

- 1. http://windowsil.org/2008/03/13/60-ghz-wireless-communications/
- 2. http://www.dailywireless.org/2006/11/13/more-70ghz-radios/

Ning Li, Tokyo Tech

Applications

Ref: http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.apps.html 2008/12/1

TOKYOTIECH Pursuing Excellence

Background

60GHz LNA Design Method

Circuit and Simulation Results

Conclusions

2008/12/18

Issues...

When up to mm-wave CMOS LNA...

- High frequency
- ⊗ Lower gain
 - \circledast MAG is inversely proportional to the logarithm of the operating frequency $\rm f_c.$
- ℬ Higher noise
 - $\ensuremath{\mathfrak{S}}$ NF_{min} is proportional to the operating frequency f_c.

 $W_{\rm f}$ =2.5 µ m, $N_{\rm f}$ =32, $V_{\rm gs}$ =0.8V and $V_{\rm ds}$ =0.8V.

2008/12/18

Ning Li, Tokyo Tech

ΤΕΓΗ

Pursuing Excellence

ΓΟΚΥΟ

Cascode Topology Noise

Cascode

CS+CG

Small signal equivalent circuit

High noise contribution of M2 due to the large interstage node capacitance.

Reference:

Hirad Samavati, et al., IEEE JSSC, VOL. 35, NO. 5, MAY 2000

2008/12/18

Ning Li, Tokyo Tech

CS-CS Noise

Common source topology has a smaller NF.
Using source degeneration to adjust the value of the input impedance.

Reference: D.K. Shaeffer, et al., IEEE JSSC, VOL. 32, NO. 5, MAY 1997. 2008/12/18 Ning Li, Tokyo Tech

Outline

TOKYD TIECH Pursuing Excellence

8

Background

60GHz LNA Design Method

Circuit and Simulation Results

Conclusions

Transistor Model at 60 GHz

- Based on BSIM4 model
- ◆Large signal
- ♦ Scalable
- Back-gate model

Measurement condition:

$$W_{\rm f}$$
=2.5 µ m, $N_{\rm f}$ =32, $V_{\rm gs}$ =0.8V
and $V_{\rm ds}$ =0.8V.

Slow-wave Transmission Line

 $C \rightarrow Larger$

Phase Constant: $\beta \approx \omega \sqrt{LC}$

1()

ΓΟΚ

2008/12/18

Proposed LNA Circuit

♦ Multi-stage

≻Higher gain

Dual noise-matching topology

Lower noise

Stability

ΤΠΚ

Common source is much more sensitive to process variations arising from the bilateral nature of the device.

Input matching

Careful layout

Circuit is unconditionally stable from DC to 100GHz.

For Comparing...

The same stage used

Ning Li, Tokyo Tech

13

Ħ

ΤΟΚ

14

Matsuzawa 👫 & Okada Lab.

• 7GHz bandwidth in Japan

59GHz~66GHz	Proposed	Conventional
S11	<-11.4dB	<-13.3dB
S22	<-5.1dB	<-5.7dB

Simulation Results – Power Gain

ProposedConventionalGain15dB16dB

Ning Li, Tokyo Tech

15

ΓΕΓΗ

Pursuing Excellence

ΓΟΚΥΟ

Simulation Results -- NF

Ning Li, Tokyo Tech

Performance Comparison

ΤΟΚ	YD TIECH—				
	Pursuing Excellence				

	Simulation		Measurement				
	Proposed	Conv.	[1]	[2]	[3]	[4]	[5]
Technology	90nm CMOS	90nm CMOS	90nm CMOS	90nm CMOS	90nm CMOS	90nm CMOS	65nm CMOS
Topology	dual-CS	cascode	CS	cascode	cascode	CS	cascode
Gain [dB]	15	16	15	14.6	15.5	12.2	22.3 (diff.)
NF [dB]	5.0	6.4	4.4	5.5 (sim)	6.5	6 (sim)	6.1
Power [mW]	22	19	3.9	24	86	10.5	35

Reference:

[1] Emanuel Cohen, et al., RFIC, pp. 61-64, 2008. [2] Terry Yao, et al., IEEE JSCC, vol. 42, no. 5, pp. 1044-1057, 2007. [3] Stefano Pellerano, et al., ESSCIRC, pp. 352-355, 2007. [4] Babak Heydari, et al., IEEE JSCC, vol. 42, no. 12, pp. 2893-2903, 2007. [5] Christopher Weyers, et al., ISSCC, pp. 192-192, 2008.

Outline

18 TOKYOTIECH PursuingExcellence

Background

60GHz LNA Design Method

Circuit and Simulation Results

Conclusions

- A three-stage LNA employing a dual noise-matching topology
- Noise matching optimized by using source degeneration
- ♦ A 5dB NF realized by dual noise matching technique
- Comparing with the conventional
 - ☑ 1.4dB NF improvement
 - × 1dB gain decrease
 - **×** 3mW power consumption increase

ΤΠΚ

Finally...

20 TOKYOTIECH PursuingExcellence

Thank you !

