カレントスティーリングDACの動的特性の調暻
 Recent studies on the dynamic behavior of current－steering DACs

東京工業大学 大学院理工学研究科 電子物理工学專攻
 フレィ マティアス, 松澤 昭
 Matthias Frey and Akira Matsuzawa

Motivation, Background

- What is a current-steering DAC?

Motivation

- Why should we care about dynamic properties?
...and not only about INL/ DNL?

SFDR vs. Signal Frequency

...later!

from:
Bugeja et al., "14-b, 100-MS/s CMOS DAC for spectral performance", JSSC 1999

from:
T. Chen, et al., "A 14-bit 130-MHz CMOS Current-Steering DAC with adjustable INL", ESSCC 2004

from:
Q. Huang, "Low Voltage and Low Power Aspects of Data Converter Design", ESSCC 2004
－Switching in Current Steering DACs：

－Switching in Current Steering DACs：

realistic：

Part l: Origin of reduced SFDR

- Switching Delay Differences:
- Output-Dependent Delay Difference
- Cell-Dependent Delay Difference
- Errors Introduced while Switching:
- Switching Crossover
- Charge Feed-through
- Resampling Circuits
- Non-Return-to-Zero vs. Return-to-Zero
- Dual Return-to-Zero Circuit

Preliminaries: One Definition

- SFDR: Spurious Free Dynamic Range

from: E. Balestrieri, et al.,
"Some critical notes on DAC frequency
domain specifications", IMEKO, 2006.
- many definitions of SFDR exist!
- many definitions of Spur exist, e.g., "nonharmonic", "any non-signal component"
- various frequency bands of interest
- SFDR is generally a function of input-signal frequency and amplitude, and sampling frequency

Switching Delay Differences

- Cell-Dependent Delay Differences:
- delay differences between current-sources is one of the main differences for bad SFDR.
- delay determined by position of the current-cell in the layout
- model discussed:
- linearly-distributed delays are considered
- maximum delay difference: $d_{\text {max }}$

Switching Delay Differences

- Cell-Dependent Delay Differences: Main results:
- "worst case scenario": $\quad f_{0} \leq \frac{2}{\pi d_{\max } 10^{(6.02 N+1.76) / 20}}$
e.g.: 10 bits DAC, $d_{\text {max }}=100 \mathrm{ps}$
\Rightarrow max. signal frequency: $\mathrm{f}_{0}<5 \mathrm{MHz}$
- The distribution of the delay values has the greatest impact on the SFDR, rather than the values itself.
\Rightarrow switching sequence needs to be optimized

Switching Delay Differences

\Rightarrow switching sequence needs to be optimized

discussed in:
T. Chen and G. Gielen,
"The analysis and improvement of a current-steering DAC's dynamic range-l: The cell-dependent delay differences", Jan. 2006.

Switching Delay Differences

- Output-Dependent Delay Differences:
- Origin:
- A transistor switches at $\mathrm{V}_{\mathrm{gs}}=\mathrm{V}_{\text {th }}$
- Because of the Switch-transistor's limited $\left(g_{m} \cdot r_{0}\right)$:
$\mathrm{V}_{\mathrm{x}}(\mathrm{t})=\mathrm{f}\left(\mathrm{V}_{0}(\mathrm{t}), \mathrm{V}_{1}(\mathrm{t}), \mathrm{V}_{\mathrm{s} 0}(\mathrm{t}), \mathrm{V}_{\mathrm{s} 1}(\mathrm{t})\right)$
- $\mathrm{V}_{\mathrm{x}}(\mathrm{t}) \approx \mathrm{V}_{0} /\left(1+\mathrm{gm}_{\mathrm{m}} \mathrm{r}_{\mathrm{o}}\right)$
g_{m}, r_{0} : transconductance and output resistance of the switch transistor

"The analysis and improvement of a current-steering DAC's dynamic range-II:
The output-dependent delay differences", Feb. 2007.

Switching Delay Differences

- Output-Dependent Delay Differences:
- As the clock-signals $\mathrm{V}_{\mathrm{si}}(\mathrm{t})$ have a finite slope and
- the source voltage $\mathrm{V}_{\mathrm{x}}(\mathrm{t})$ depends on the output voltage, $\mathrm{V}_{\mathrm{i}}(\mathrm{t})$,
\Rightarrow the switch-delay depends on the output voltage.

"The analysis and improvement of a current-steering DAC's dynamic range-II:
The output-dependent delay differences", Feb. 2007.

Switching Delay Differences

Practical Example:

- max. output voltage swing: 0.5 V
- $g_{m} r_{0} \approx 10$
- max. source voltage $\left(\mathrm{V}_{\mathrm{x}}\right)$ variation: $\approx 0.05 \mathrm{~V}$
- rising speed of clock: $1.25 \mathrm{~V} / \mathrm{ns}$
\Rightarrow resulting delay difference: 40 ps

ferences:

"The analysis and improvement of a current-steering DAC's dynamic range-II:
The output-dependent delay differences", Feb. 2007.

Switching Delay Differences

- Output-Dependent Delay Differences:
- Effects on the SFDR:
single-ended output:

$$
\begin{aligned}
\mathrm{SFDR} & =\frac{4}{\omega_{0} d_{\max }} \sqrt{\frac{1+4 \omega_{0}^{2} \tau^{2}}{1+\omega_{0}^{2} \tau^{2}}} \\
\mathrm{SFDR} & \approx \frac{4}{\omega_{0} d_{\max }}
\end{aligned}
$$

SFDR decreases with:
increasing $d_{\text {max }}$ increasing signal frequency ω_{0}

differential output:

$$
\begin{aligned}
& \mathrm{SFDR}=\frac{32 \tau}{\omega_{0} d_{\max }^{2}} \sqrt{\frac{1+9 \omega_{0}^{2} \tau^{2}}{1+\omega_{0}^{2} \tau^{2}}} \\
& \mathrm{SFDR} \approx \frac{32 \tau}{\omega_{0} d_{\max }^{2}}
\end{aligned}
$$

SFDR decreases with:
increasing $d_{\text {max }}$
increasing signal frequency ω_{0} decreasing time constant T

Switching Delay Differences

- Output-Dependent Delay Differences:
- Effects on the SFDR:
single-ended output:

differential output:

discussed in:
T. Chen and G. Gielen,
"The analysis and improvement of a current-steering DAC's dynamic range-II:
The output-dependent delay differences", Feb. 2007.

Switching Delay Differences

- Output-Dependent Delay Differences:
- Measures against it:
- increase ($\mathrm{g}_{\mathrm{m}} \cdot \mathrm{r}_{\mathrm{o}}$) of switches
- add a cascode stage for switch (if voltage headroom permits)
- scale the switches to increase $\mathrm{g}_{\mathrm{m}} \cdot \mathrm{r}_{0}$
- accelerate switching speed
- add an RZ stage

Switching Current Sources

－Errors introduced while Switching：
－＂turning on＂－transistor reaches different regions of operation at different times than its complementary ＂turning off＂transistor．
short time where both differential current－switches are off
\rightarrow abrupt discharge with steep transient
\rightarrow voltage V_{x} drops

Switching Current Sources

－Charge feed－through：
－common problem for all SC－and SI－circuits
－first order proportional to
－switch－capacitance（switch－size）
－switch－driving signal slope
－switch－driving signal swing
－ideal switching scheme （for min．feed－through）：
－small switch
－slow switch－driving signal
－small switch－driving signal swing

Switching Current Sources

- How to improve switching behavior
- ideal switching scheme:
- for min. feed-through:
- small switch
- slow switch-driving signal
- small switch-driving signal swing
- for small output-dep. delay differences:
- increase size of switches for large ($\mathrm{gm}_{\mathrm{m}} \cdot \mathrm{r}_{0}$)
- for short crossover time:
- fast switching to minimize switching time

Switching Current Sources

－How to improve switching behavior
－ideal switching scheme：
－for min．feed－thra．．．

Switch Optimization：

－find ideal trade－off for switch－size （use cascode if head－room permits）
－slow switching signal，but with small signal－swing
－ 1 woover time：
－fast switching to minimize switching time

NRZ vs．RZ，dual RZ

－NRZ vs．RZ，dual RZ：
－RZ，return－to－zero circuit：
－each pulse returns to zero for a portion of the clock period

NRZ vs．RZ，dual RZ

－NRZ vs．RZ，dual RZ：
－RZ，return－to－zero circuit：
－each pulse returns to zero for a portion of the clock period
－solves inter－symbol interference problem
－halves the output signal power，extra circuitry power
－reduces SFDR for low frequency input signals

NRZ vs. RZ, dual RZ

- NRZ vs. RZ, dual RZ:
- RZ, return-to-zero circuit:
- each pulse returns to zero for a portion of the clock period
- solves inter-symbol interference problem
- halves the output signal power, extra circuitry power
- reduces SFDR for low frequency input signals

from:
Q. Huang, "Low Voltage and Low Power Aspects of Data Converter Design", ESSCC 2004

NRZ vs．RZ，dual RZ

－Dual RZ：
－RZ，return－to－zero circuit：
－combines two shifted RZ－pulses to a single pulse

from：
R．Adams，et al．，＂A $113 d B$ SNR oversampling DAC with segmented noise－shaped scrambling＂，ISSCC 1998.

NRZ vs. RZ, dual RZ

- Dual RZ:
- RZ, return-to-zero circuit:
- combines two shifted RZ-pulses to a single pulse
- solves inter-symbol interference problem
- large circuit overhead

Part II：Modeling of DACs

－Simple Mathematical Model of a Current－Steering DAC＇s Output
－Code－Transition
－Output－Dependent Delay Difference
－The Simulink Model
－Future Work
－Check whether the Model is precise enough
－Build a Feedback Loop to Correct Non－Idealities

Preliminaries: Two Definitions

- Glitch "Energy", Egl:
- sometimes called "Glitch Area"
- not an energy, but voltage integrated over time
- Unit: often [pV•s]
- many different definitions
"my" definition:
- Glitch Time, tg_{g} :
- "time during which the glitch occurs"

Simple Mathematical Model of a CS-DAC

- Current-Source Switching:
- Code-Transition modeled by
- shifted "tanh"-function
$+$
- exponentially-damped sinusoid as glitch

$$
i_{\text {out }}=\begin{aligned}
& A_{\mathrm{gl}} \sin \left(\frac{2 \pi}{t_{\mathrm{gl}}}\left(t-t_{0}\right)\right) \exp \left(-\operatorname{sign}\left(t-t_{0}\right) \frac{2 \pi}{t_{\mathrm{gl}}}\left(t-t_{0}\right)\right) \\
& +\frac{\operatorname{level}_{i+1}-\operatorname{level}_{i}}{2} \tanh \left(\frac{2 \pi}{t_{\mathrm{gl}}}\left(t-t_{0}\right)\right) \\
& +\frac{\operatorname{level}_{i+1}+\operatorname{level}_{i}}{2}
\end{aligned}
$$

Simple Mathematical Model of a CS-DAC

- Current-Source Switching:

$$
\begin{aligned}
i_{\mathrm{out}}= & \left.A_{\mathrm{gl}} \sin \left(\frac{2 \pi}{\overline{t_{\mathrm{gl}}}}\left(t-t_{0}\right)\right) \exp \left(-\operatorname{sign}\left(t-t_{0}\right) \frac{2 \pi}{t_{\mathrm{gl}}} t-t_{0}\right)\right) \\
& +\frac{\text { level }_{i+1}-\text { level }_{i}}{2} \tanh (2 \pi \\
& +\frac{\text { level }_{i+1}+\text { level }_{i}}{2}
\end{aligned}
$$

- Parameters:

- Glitch Energy, Egl \rightarrow Glitch Amplitude A_{gl}
- Glitch Time, $\mathrm{tgl}_{\mathrm{g}}$
- number of switches (involved in the code-transition)

Simple Mathematical Model of a CS－DAC

－From Transistor－Level to High－Level

1）Transistor－Level Simulation in Cadence：

3）High－Level Simulation with Extracted Parameters：

2）Extract Parameters $\mathrm{E}_{\mathrm{g}}, \mathrm{t}_{\mathrm{g} \mid}$

Simple Mathematical Model of a CS－DAC

－From Transistor－Level to High－Level
－Is the model precise enough？
－Glitches are more symmetric in the mathematical model than in Cadence
－With the same glitch－time， t_{g} ， the high－level simulation has a smaller bandwidth．

Simple Mathematical Model of a CS－DAC

－From Transistor－Level to High－Level
－Is the model precise enough？
－Glitches are more symmetric in the mathematical model
 than in Cadence
－With the same glitch－time， t_{gl} ， the high－level simulation has a smaller bandwidth．

Simple Mathematical Model of a CS-DAC

- Output-Dependent Delay Difference

$$
\begin{aligned}
V_{\mathrm{x}}(t) & =\frac{V_{0}(t)}{1+g_{m} r_{0}} \\
t_{\text {delay }} & =\frac{t_{s w}}{V_{s w}\left(V_{\mathrm{th}}+V_{\mathrm{x}}(t)\right)} \\
t_{\text {delay }} & =\frac{t_{s w}}{V_{s w}\left(V_{\mathrm{th}}+\frac{V_{0}(t)}{1+g_{m} r_{0}}\right)}
\end{aligned}
$$

Simulink Model of a CS-DAC

- Output of the Simulink Model:

Future Work

- Check if Model's Precision is enough
- Design Feedback Loop to Correct Non-Idealities of DAC-Settling

(a) Feedforward with a seperate calibration DAC.
(b) Feedback with a separate calibration DAC.
－The settling behavior of a current－steering DAC was discussed．
－Various reasons for SFDR degradation in current－steering DACs was presented．
－Hints for the design of the switches in current－steering DACs were given．
－A simple mathematical model of a current－ steering DAC was presented．

Thank you for your interest!

for questions \& comments: mfrey@ieee.org

