

カレントスティーリングDACの動的特性の調査 Recent studies on the dynamic behavior of current-steering DACs

東京工業大学 大学院 理工学研究科 電子物理工学専攻

フレイ マティアス、松澤 昭 Matthias Frey and Akira Matsuzawa

Motivation, Background

What is a current-steering DAC?

Matthias Frey, Tokyo Institute of Technology

ΌΤΕΓΗ

Matsuzawa

& Okada Lab.

Pursuing Excellence

Motivation

2007/09/25

Matthias Frey, Tokyo Institute of Technology

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence

Switching in Current Steering DACs:

TECH

Pursuing Excellence

ΓΟΚ

2007/09/25

Switching in Current Steering DACs:

realistic:

Ό ΤΕΓΗ

Pursuing Excellence

ΤΟΚ

2007/09/25

Part I: Origin of reduced SFDR

- Switching Delay Differences:
 - Output-Dependent Delay Difference
 - Cell-Dependent Delay Difference
- Errors Introduced while Switching:
 - Switching Crossover
 - Charge Feed-through
- Resampling Circuits
 - Non-Return-to-Zero vs. Return-to-Zero
 - Dual Return-to-Zero Circuit

Pursuing Excellence

ΓΟΚ

6

Preliminaries: One Definition

• SFDR: Spurious Free Dynamic Range

from: E. Balestrieri, et al., "Some critical notes on DAC frequency domain specifications", IMEKO, 2006.

- many definitions of SFDR exist!
- many definitions of Spur exist, e.g., "nonharmonic", "any non-signal component"
- various frequency bands of interest
- SFDR is generally a function of input-signal frequency and amplitude, and sampling frequency

DTECH PursuingExcellence

ΓΟΚ

7

- Cell-Dependent Delay Differences:
 - delay differences between current-sources is one of the main differences for bad SFDR.
 - delay determined by position of the current-cell in the layout
 - model discussed:
 - linearly-distributed delays are considered
 - maximum delay difference: d_{max}

discussed in: T. Chen and G. Gielen, *"The analysis and improvement of a current-steering DAC's dynamic range-I: The cell-dependent delay differences"*, Jan. 2006.

Pursuing Excellence

ΤΟΚΥΟ ΤΕΓΗ

8

 Cell-Dependent Delay Differences: Main results:

- "worst case scenario": $f_0 \leq \frac{\pi d_{max}}{\pi d_{max}}$

$$f_0 \le \frac{2}{\pi d_{\max} 10^{(6.02N+1.76)/20}}$$

e.g.: 10 bits DAC, $d_{max} = 100 \text{ ps}$ \Rightarrow max. signal frequency: $f_0 < 5 \text{ MHz}$

 The distribution of the delay values has the greatest impact on the SFDR, rather than the values itself.

 \Rightarrow switching sequence needs to be optimized

discussed in: T. Chen and G. Gielen, *"The analysis and improvement of a current-steering DAC's dynamic range-I: The cell-dependent delay differences"*, Jan. 2006.

Pursuing Excellence

ΤΟΚ

9

\Rightarrow switching sequence needs to be optimized

discussed in: T. Chen and G. Gielen, *"The analysis and improvement of a current-steering DAC's dynamic range-I: The cell-dependent delay differences"*, Jan. 2006.

Matthias Frey, Tokyo Institute of Technology

ΤΟΚΥΟ ΤΕΓΗ

- Output-Dependent Delay Differences:
 - Origin:
 - A transistor switches at $V_{gs} = V_{th}$
 - Because of the Switch-transistor's limited $(g_m \cdot r_0)$: $V_x(t) = f(V_0(t), V_1(t), V_{s0}(t), V_{s1}(t)) \stackrel{V_{s0}(t)}{\leftarrow}$

•
$$V_x(t) \approx V_0 / (1 + g_m r_0)$$

g_m, r₀: transconductance and output resistance of the switch transistor

> T. Chen and G. Gielen, "The analysis and improvement of a current-steering DAC's dynamic range-II: The output-dependent delay differences", Feb. 2007.

bias

discussed in:

TECH

Pursuing Excellence

R_{Load}

 $V_{s1}(t)$

ΓΟΚ

 $V_1(t)$

V_x(t)

 R_{Load}

V_{casc}

V_{bias}

V₀(t)

- Output-Dependent Delay Differences:
 - As the clock-signals V_{si}(t) have a finite slope and
 - the source voltage V_x(t) depends on the output voltage, V_i(t),
 - ⇒ the switch-delay depends on the output voltage.

"The analysis and improvement of a current-steering DAC's dynamic range-II: The output-dependent delay differences", Feb. 2007.

Pursuing Excellence

ΓΟΚ

11

2007/09/25

2007/09/25

- Output-Dependent Delay Differences:
 Effects on the SFDR:
 - single-ended output: SFDR = $\frac{4}{\omega_0 d_{\text{max}}} \sqrt{\frac{1+4\omega_0^2 \tau^2}{1+\omega_0^2 \tau^2}}$ SFDR $\approx \frac{4}{\omega_0 d_{\text{max}}}$

SFDR decreases with: increasing d_{max} increasing signal frequency ω₀

differential output:

SFDR =
$$\frac{32\tau}{\omega_0 d_{\text{max}}^2} \sqrt{\frac{1+9\omega_0^2 \tau^2}{1+\omega_0^2 \tau^2}}$$

SFDR $\approx \frac{32\tau}{\omega_0 d_{\text{max}}^2}$

SFDR decreases with: increasing d_{max} increasing signal frequency ω_0 decreasing time constant τ

discussed in: T. Chen and G. Gielen, *"The analysis and improvement of a current-steering DAC's dynamic range-II: The output-dependent delay differences"*, Feb. 2007.

Matthias Frey, Tokyo Institute of Technology

ʹΠΤΕΓΗ

Pursuing Excellence

- Output-Dependent Delay Differences:
 - Effects on the SFDR:

differential output:

discussed in: T. Chen and G. Gielen, "The analysis and improvement of a current-steering DAC's dynamic range-II: The output-dependent delay differences", Feb. 2007.

2007/09/25

Matthias Frey, Tokyo Institute of Technology

ʹΟΤΕΕΗ

Pursuing Excellence

- Output-Dependent Delay Differences:
 - Measures against it:
 - increase $(g_m \cdot r_0)$ of switches
 - add a cascode stage for switch (if voltage headroom permits)
 - scale the switches to increase $g_m \cdot r_0$
 - accelerate switching speed
 - add an RZ stage

discussed in: T. Chen and G. Gielen, *"The analysis and improvement of a current-steering DAC's dynamic range-II: The output-dependent delay differences"*, Feb. 2007.

Pursuing Excellence

ΤΟΚΥΟ ΤΕΓΗ

Switching Current Sources

- Errors introduced while Switching:
 - "turning on"-transistor reaches different regions of operation at different times than its complementary "turning off" transistor.

 I_0

V

 V_{s0}

 V_{s1}

short time where both differential current-switches are off

→ abrupt discharge with steep transient

→ voltage V_x drops

2007/09/25

Matthias Frey, Tokyo Institute of Technology

TECH

Pursuing Excellence

- Charge feed-through:
 - common problem for all SC- and SI-circuits
 - first order proportional to
 - switch-capacitance (switch-size)
 - switch-driving signal slope
 - switch-driving signal swing
 - ideal switching scheme (for min. feed-through):
 - small switch
 - slow switch-driving signal
 - small switch-driving signal swing

Pursuing Excellence

Switching Current Sources

- How to improve switching behavior
 - ideal switching scheme:
 - for min. feed-through:
 - small switch
 - slow switch-driving signal
 - small switch-driving signal swing
 - for small output-dep. delay differences:
 - increase size of switches for large $(g_m \cdot r_0)$
 - for short crossover time:
 - fast switching to minimize switching time

Pursuing Excellence

Switching Current Sources

- How to improve switching behavior
 - ideal switching scheme:
 - for min. feed-through

fast switching to minimize switching time

Pursuing Excellence

ΓΟΚ

- NRZ vs. RZ, dual RZ:
 - RZ, return-to-zero circuit:
 - each pulse returns to zero for a portion of the clock period

ΥΠ ΤΙΕΓΗ

Pursuing Excellence

ΓΟΚ

2007/09/25

- NRZ vs. RZ, dual RZ:
 - RZ, return-to-zero circuit:
 - each pulse returns to zero for a portion of the clock period
 - solves inter-symbol interference problem
 - halves the output signal power, extra circuitry power
 - reduces SFDR for low frequency input signals

Pursuing Excellence

- NRZ vs. RZ, dual RZ:
 - RZ, return-to-zero circuit:
 - each pulse returns to zero for a portion of the clock period
 - solves inter-symbol interference problem
 - halves the output signal power, extra circuitry power
 - reduces SFDR for low frequency input signals

from:

Q. Huang, "Low Voltage and Low Power Aspects of Data Converter Design", ESSCC 2004

TECH

Pursuing Excellence

ΓΟΚ

2007/09/25

- Dual RZ:
 - RZ, return-to-zero circuit:
 - combines two shifted RZ-pulses to a single pulse

ΥΟ ΤΕΓΗ

Pursuing Excellence

ΓΟΚ

2007/09/25

- Dual RZ:
 - RZ, return-to-zero circuit:
 - combines two shifted RZ-pulses to a single pulse
 - solves inter-symbol interference problem
 - large circuit overhead

ΤΟΚΥΟ ΤΕΓΗ

Pursuing Excellence

- Simple Mathematical Model of a Current-Steering DAC's Output
 - Code-Transition
 - Output-Dependent Delay Difference
 - The Simulink Model
- Future Work
 - Check whether the Model is precise enough
 - Build a Feedback Loop to Correct Non-Idealities

Pursuing Excellence

Preliminaries: Two Definitions

- Glitch "Energy", Egl:
 - sometimes called "Glitch Area"
 - not an energy, but voltage integrated over time
 - Unit: often [pV · s]
 - many different definitions
 - Glitch Time, t_{gl}:
 - "time during which the glitch occurs"

ΓΟΚ

ΤΕΓ

Pursuing Excellence

- Current-Source Switching:
 - Code-Transition modeled by
 - shifted "tanh"-function

+

exponentially-damped sinusoid as glitch

$$i_{\text{out}} = A_{\text{gl}} \sin\left(\frac{2\pi}{t_{\text{gl}}} \left(t - t_{0}\right)\right) \exp\left(-\operatorname{sign}(t - t_{0})\frac{2\pi}{t_{\text{gl}}} \left(t - t_{0}\right)\right)$$
$$+ \frac{\operatorname{level}_{i+1} - \operatorname{level}_{i}}{2} \tanh\left(\frac{2\pi}{t_{\text{gl}}} \left(t - t_{0}\right)\right)$$
$$+ \frac{\operatorname{level}_{i+1} + \operatorname{level}_{i}}{2}$$

discussed in: J. Vandenbussche et al., "Systematic Design of High-Accuracy Current-Steering D/A Converter Macrocells for Integrated VLSI Systems", TCAS-II, March 2001.

Matthias Frey, Tokyo Institute of Technology

ΤΟΚΥΟ ΤΕΕΗ

Pursuing Excellence

Current-Source Switching:

- Parameters:
 - Glitch Energy, EgI → Glitch Amplitude AgI
 - Glitch Time, t_{gl}
 - number of switches (involved in the code-transition)

discussed in:

J. Vandenbussche et al.,

"Systematic Design of High-Accuracy Current-Steering

D/A Converter Macrocells for Integrated VLSI Systems", TCAS-II, March 2001.

Pursuing Excellence

ΤΟΚΥΟ ΤΙΕΓΗ

21

From Transistor-Level to High-Level

Matsuzawa & Arrowski & Okada Lab.

'O TECH

Pursuing Excellence

ΓΟΚ

22

2007/09/25

- From Transistor-Level to High-Level
- Is the model precise enough?
 - Glitches are more symmetric in the mathematical model than in Cadence
 - With the same glitch-time, t_{gl},
 the high-level simulation has
 a smaller bandwidth.

ΓΟΚ

TECH

Pursuina Excellence

- From Transistor-Level to High-Level
- Is the model precise enough?
 - Glitches are more symmetric in the mathematical model than in Cadence
 - With the same glitch-time, t_{gl},
 the high-level simulation has
 a smaller bandwidth.

TDK

TECH

Pursuina Excellence

23

Output-Dependent Delay Difference

ΓΟΚ

Pursuing Excellence

24

2007/09/25

Simulink Model of a CS-DAC

FOKYO FIECH Pursuing Excellence

• Output of the Simulink Model:

2007/09/25

Future Work

- Check if Model's Precision is enough
- Design Feedback Loop to Correct Non-Idealities of DAC-Settling

(a) Feedforward with a separate calibration DAC. (b) Feedback with a separate calibration DAC.

στεεμ

Pursuing Excellence

ΓΟΚ

Analog

Output

А

D

cal.

DAC

- The settling behavior of a current-steering DAC was discussed.
- Various reasons for SFDR degradation in current-steering DACs was presented.
- Hints for the design of the switches in current-steering DACs were given.
- A simple mathematical model of a currentsteering DAC was presented.

Pursuina Excellence

Thank you for your interest!

for questions & comments: mfrey@ieee.org

28

2007/09/25