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Abstract - This paper proposes a direct capacitance-to-digital 
converter (CDC) for biotelemetry applications. The proposed 
circuit is based on a charge redistribution technique using a ca-
pacitive sensor and a ranging capacitor array. The circuit does 
not require accurate reference voltages, so it is robust for fluc-
tuation of supply voltage. Output-code range can be dynamically 
zoomed in arbitrary capacitance range of sensor output by using 
the ranging capacitor array. 
An 8-bit converter with an active area of 0.026mm2, consuming 

0.9nJ per sample, is demonstrated. The proposed circuit main-
tains its performance even in the condition of 28% fluctuations 
in supply voltage. Measurement results of the readout circuit are 
also demonstrated, which shows that the proposed circuit can 
work well in the presence of large parasitic capacitances. 
 

I. INTRODUCTION 
Recently, wireless health monitoring systems have been 

developed to achieve convenient medical measurement and 
reduce pain and suffering of patients [1,2]. For example, 
swallowable capsules for stomach and intestine monitoring 
[3,4], blood pressure monitoring systems [5,6], and bladder 
pressure measurement systems [7] have been reported. For 
more comfortable measurements, a smaller device is required. 
Therefore, a smaller battery as well as low-power circuit op-
eration is of interest. In such systems, a capacitive pressure 
sensor is often used because it does not consume static cur-
rent.  

In capacitive pressure sensors, the capacitance of the sen-
sors varies with the pressure. Various circuits have been pro-
posed for measuring the capacitance. In [8,9], the sensor ca-
pacitance is utilized to generate the carrier frequency for 
wireless transmissions. However, re-transmission is impossi-
ble for such circuits, even though the re-transmission is in-
dispensable for robust sensing. In other implementations, a 
capacitance-to-voltage converter (CVC) and an ana-
log-to-digital converter (ADC) are utilized for readout of a 
capacitive sensor [10,11]. The capacitance of the sensor is 
converted by the CVC, and the output voltage is converted to 
a digital code. However, such a redundant architecture results 
in large power consumption and a large chip area. Direct 
readout circuits are reported in [12,13], which employ a 
delta-sigma ADC. However, the circuits require large power 
dissipation due to the operational amplifiers (opamp) in the 

ADC. 
This paper proposes a low power and small area capaci-

tance-to-digital converter suited for biotelemetry systems. The 
proposed circuit is realized by incorporating a pressure sensor 
and a ranging capacitor array into successive approximation 
register (SAR) technique. The pressure sensor sometimes has 
large parasitic capacitance, and it degrades the dynamic range 
of the conventional readout circuits using the SAR technique 
[14,15]. The proposed circuit can cancel the parasitic capaci-
tance by using the ranging capacitor array, which also enables 
to shift output-code range into intended range of sensor ca-
pacitance. The ranging capacitor can subtract offset capaci-
tance. Moreover, the total dynamic range of the readout cir-
cuit is scalable, which is controlled by the reference voltage. 
These two mechanisms realize dynamic zooming of sensing 
range. 

The proposed circuit does not require accurate reference 
voltages. Only relative accuracy to supply voltage is required 
because comparisons for SAR are performed in the capaci-
tance domain. In this paper, measurement results using a mi-
cro-electro-mechanical systems (MEMS) sensor are demon-
strated. The proposed circuit is highly compatible with bio-
telemetry applications. 

II. CIRCUIT ARCHITECTURE 
A. Overview of the Proposed Circuit  

Fig. 1 shows the block diagram of the proposed circuit. It 
consists of a capacitive sensor Cx, a ranging capacitor array 
Cm, a main capacitor array, a serial capacitor Cs, a comparator, 
a SAR and switches. The proposed circuit has two advan-
tages; the dynamic zooming of sensing range with the ranging 
capacitor array, and voltage scalability caused by a di-
rect-capacitance-comparison technique. The dynamic range 
can be adjusted by the reference voltage, and offset capaci-
tance can be canceled by the ranging capacitor array. Thus, 
output code can be mapped into an arbitrary capacitance 
range of sensors. Using the direct-capacitance-comparison 
technique, the capacitance of sensor is directly compared and 
converted to a digital code. The voltages of every nodes in the 
capacitor array are scalable to the supply voltage VDD, so the 
output codes are consistent to the supply voltage VDD, which 
is a very important feature for implantable devices. Moreover, 
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the circuit does not use opamps, so it can operate with low 
power consumption. 

B. Operation and reference voltage scaling 
The direct-capacitance-comparison technique enables the 

circuit to compare the sensor capacitance with the selected 
capacitances in the array. The selection and comparison is 
successively performed from the largest capacitor to the 
smallest capacitor. The comparison is along with each step, 
and the output code is obtained one by one. The operation of 
the circuit and comparison are described as follows. 
The circuit operates in two steps. The first step is the “sam-
pling” step. The switches connected to nodes Vx and Vy are 
turned on, the Cx port is connected to the reference voltage 
kVDD, and the other ports are connected to ground. k is a scale 
factor to scale dynamic range of the sensor. Then, charge is 
stored on the nodes Vx and Vy, which is derived from 

cmsall_vxDDcmxvx )()( VCCkVVCQ ++−= , (1) 

cmsvy VCQ −= ,    (2) 

where Call_vx is the total capacitance between the node Vx and 
ground. 

The second step is the “conversion” step. The switches 
connected to nodes Vx and Vy are turned off, and the most 
significant bit (MSB) capacitor port is connected to VDD. 
When the law of charge conservation is applied to nodes Vx 
and Vy, 
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is obtained, where CMSB is the MSB capacitance. Call_vy is the 
total capacitance between the node Vy and ground. 

The voltage is compared with Vcm and the MSB is deter-
mined as “1” (when Vx < Vcm) or “0” (when Vx > Vcm). Here, 
the factor m is defined as 
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Then, (3) can be re-described as 

DDxMSBcmx )( mVkCCVV −=− .  (5) 

Comparing Vx with Vcm means the comparison of CMSB and 
kCx because m and VDD are positive. This is the di-
rect-capacitance-comparison technique. If CMSB is larger than 
kCx, the MSB is “0”and else, the MSB is “1”. Moreover the 
important point is that VDD does not affect the output code. 
The robustness to fluctuation in supply voltage is achieved by 
this feature. 

C 32C Cm Cx

Vx
Cs

C 8C

Vcm

SAR Logic
Vcm

VDD

Vy

kVDD

Cx : Capacitive sensor  
Fig. 1. Block diagram of the proposed circuit. 

The MSB is determined as above. If the code is “1”, the 
MSB capacitor is connected to VDD for the remaining conver-
sion steps. If the code is “0”, it is connected to ground for the 
remaining conversion steps. After then, the next lower bit 
capacitor is connected to VDD. Then, the voltage Vx is com-
pared with Vcm and the second significant bit is determined. 
The conversion steps continue until the least significant bit 
(LSB) is determined. 

Due to the charge conservation at the nodes Vx and Vy, the 
voltage at the comparing node Vx is calculated as (6) for each 
step. 
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where Con_vx is the total capacitance between nodes Vx and 
VDD. It is the total capacitance whose code is “1” at node Vx. 
Similarly, Con_vy is the total capacitance between nodes Vy and 
VDD. From MSB to LSB, each capacitor in the array is evalu-
ated and appended to Con_vx and Con_vy, so that Vx approaches 
Vcm. When all bits have been determined, the output code in-
dicates the approximated value of the kCx. kCx is the sensor 
capacitance scaled by k. 

The scale factor k is used to map the sensing range into the 
internal capacitance range. The maximum value of Con_vx and 
Con_vy is fixed; it is the value when all the output code is “1”. 
However, MEMS sensor often shows far larger capacitance 
than the readout circuit. The scalability enables the circuit to 
convert large capacitance and decreases the requirement for 
large capacitance in the readout circuit. Thus, small layout 
area can be easily achieved by this architecture. 

C. Offset Cancellation and Ranging 
Capacitive sensors have an initial capacitance. Initial ca-

pacitance is an invariant capacitance of a sensor in the envi-
ronment where it is used. Conventional capacitance readout 
circuits convert the total capacitance of the sensor, including 
variable and initial value. However, many codes are associ-
ated with the values lower than the initial capacitance, and the 
codes are left unused. The initial capacitance degrades the 
actual resolution in the conventional readout circuits, which is 
a ranging problem. Another problem is the offset caused by 
charge injection.  The charge emitted by the switches vary 
the charges which are stored at nodes Vx and Vy .The range 
and the offset problems are compensated by the rang-
ing-capacitor array Cm shown in Fig. 2. Cm has a similar 
structure as the main capacitor array. The operation is as fol-
lows. First, initial condition is set to the sensor. Then, the 
same “sampling” step described in Sec. II.B is executed. In-
cluding the effect of charge injection, (1) and (2) can be re-
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written as 

chvxcmsall_vxDDcmx_initvx )()( QVCCkVVCQ +++−= ,  (7) 

chvycmsvy QVCQ +−= ,              (8) 

where Cx_init is the initial capacitance of the sensor. Qvx and 
Qvy are the charge emitted by the switch connected to the 
node Vx and Vy., respectively. Then, the “conversion” steps 
described in Sec. II.B are executed, using the ranging capaci-
tor array instead of the main capacitor array. (6) is then 
re-described as 
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          (9) 
where Con_cm is the total capacitance between the node Vx and 
VDD. After N bit conversion, N bit offset codes are obtained. 
SAR logic operates causing Vx to approach Vcm. Thus, the 
term in the right side of (9) approaches zero, and the output 
codes become the cancellation of the initial capacitance and 
the offset of charge injection. 

Here, it is assumed that the sensor capacitance actually 
varies with the pressure. Cx can be divided into an initial 
value Cx_init and a changeable value Cx_val. When the offset 
codes are attached to Cm at the first conversion step, (6) can 
be rewritten as 
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                                              (10) 
The last term in the right side of (10) can be canceled. Thus, 

(10) shows that only variable range of Cx is adjusted to the 
dynamic range of the capacitor array. Any dynamic range can 
be achieved by the features of the scale factor k and the rang-
ing capacitor array Cm. 

III. EXPERIMENTAL RESULTS 
The circuit is fabricated in a 0.18-µm CMOS process with 

six metal layers and metal-insulator-metal capacitors (MIM-
CAP). Fig. 3 shows the die photo. The active area is 
0.026mm2, which is dominated by the capacitor array with the 

total capacitance of 6pF. The sensor capacitor can be con-
nected through the pads. 

Cm

CmN Cm2 Cm1

VDD

SAR

Fig. 2. Ranging capacitor array. 

Fig. 4 shows the measurement result of the capacitance to 
digital conversion. A MEMS capacitive sensor is used. Be-
cause of the measurement environment, more than 50pF para-
sitic capacitance exists, even though the variation of the sen-
sor is only 3pF. However, the ranging capacitor array Cm 
works well and conversion can be observed. The result shows 
a similar characteristic to the reference one provided by Om-
ron [16]. A MEMS capacitive sensor readout is demonstrated. 
 Some biotelemetry systems utilize wireless-power supplying, 
which often has large voltage fluctuation. Table I shows that 
the proposed circuit is robust for fluctuations in VDD. Almost 
the same SNR and ENOB results are obtained when VDD 
changes by 28%. The result is obtained when a fixed 3pF ca-
pacitor is used as the sensor capacitance, and a 3kHz sinusoi-
dal source is applied to the reference voltage kVDD. 
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Fig. 3 Die photo. 
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Fig. 4. Conversion results of the capacitive pressure sensor. 
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Table II shows the measured performance. To evaluate the 
whole code of converter, a 52Hz sine wave is applied as the 
input voltage instead of sensor variation. The reference volt-
age kVDD is supplied and a 3pF fixed capacitor is attached as 
Cx. Most of the current is consumed in the parts of the circuit 
creating the bias voltages and the common-mode bias voltage 
Vcm. Fig. 5 shows typical plots for the low-frequency differen-
tial nonlinearity (DNL) and integral nonlinearity (INL) error. 
The measurement environment is the same as the environment 
where Table II is obtained. 

IV. CONCLUSION 

An opamp-less and small area capacitance-to-digital con-

verter has been presented. The architecture is realized by in-
corporating capacitive pressure sensor and ranging capacitor 
array into a SAR technique. The special feature of the pro-
posed circuit is the dynamic zooming. The variable capaci-
tance of the sensor is dynamically scaled by the reference 
voltage, and the static capacitance of the sensor is cancelled 
by the ranging capacitor array. By the two mechanisms, the 
proposed circuit achieves the dynamic zooming and full-scale 
measurement of the sensor capacitance.  

TABLE II 

MEASUREMENT RESULTS 

 Resolution  8 Bit
 Supply Voltage  1.4 V
 Sampling Rate  262 kHz
 SNR  43.22 dB
 ENOB  6.83 Bit

 Current Consumption  169 µA
 360 µA (when using internal clock)

 Minimum DNL  -0.97 LSB
 Maximum DNL  0.79 LSB
 Minimum INL  -1.27 LSB
 Maximum INL  0.99 LSB

 Area
 0.026 mm2

 0.034 mm2 (when including clock)
 

In the experimental results, an 8-bit converter with an ac-
tive area of 0.026mm2, consuming 0.9nJ per sample, is ob-
tained. The capacitance-to-digital conversion is demonstrated, 
which works well even for a MEMS sensor that has a large 
parasitic capacitance. Furthermore, it is shown that the system 
performs well even under 28% fluctuation in supply voltage, 
because the proposed circuit does not need accurate reference 
voltages. The capacitive sensor readout circuit is highly suited 
for robust biotelemetry applications. 
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Fig. 5. Static DNL and INL error plots measured with a 1.4V supply voltage.
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