

A 0.05-mm² 110-μW 10-b Self-Calibrating Successive Approximation ADC Core in 0.18-μm CMOS

<u>Yasuhide Kuramochi^{1,2}, Akira Matsuzawa²,</u> and Masayuki Kawabata¹

1 Advantest Laboratories Ltd., Miyagi, Japan 2 Tokyo Institute of Technology, Tokyo, Japan

Outline

- Background
- ADC core architecture
- Calibration system
- Measurement results
- Conclusions

SAR ADC

 SAR=> Small, low power, wide input range => Suitable for BIST

Charge Redistribution DAC

- Capacitive DAC area is dominant in ADC core
- DAC architecture should be chosen to be as small as possible

Outline

- Background
- ADC core architecture
- Calibration system
- Measurement results
- Conclusions

Proposed ADC Core Circuitry

ADC Core Circuitry

Realizing Small DAC

Decreasing the area of DAC

 > Small unit capacitor: C=20fF
 No dummy capacitor around DAC
 => Calibration is inevitable for small DAC

Upper Bit DAC Architecture

- SNR is limited by total capacitance at DAC Out node
- To increase total capacitance, the upper bit DAC is composed of binary capacitor DAC

Limitation of SNR

- Realizing small upper bit DAC, small capacitors close to noise limitation are chosen
- 4-bit binary(8C, 4C, 2C, C) upper bit DAC

Lower Bit DAC Architecture

- Charge redistribution DAC is divided into unit DAC blocks using unit capacitors
- N bits DAC can be realized by series connection of k-bit unit DAC

Linearity Error of Unit DAC

- Dominant linearity error is caused by parasitic bottom capacitor
 - => Large "*k*" is better for linearity

Size Comparison

Linearity Error

 Dominant linearity errors are caused by a parasitic bottom capacitor and mismatch errors of parallel capacitors

ADC Core Circuitry

Calibration System

with 1/4LSB step

Self-measurement System

 The CAL DAC and comparator operates as error measurement ADC with a SAR algorithm

Measurement of Offset

- Measurement sequence :
 - **1. Measurement of the offset**
 - 2. Measurement of the upper 5-bit
- CAL SAR search for Voffset

Measurements of Cap. Errors

- Measurement sequence :
 - 1. Measurement of the offset
 - **2. Measurement of the upper 5-bit**
- CAL SAR search for <u>\[\langle Ck_err CCAL=0 \]</u>

Conversion Sequence

 Conversion Sequence : Main DAC output is calibrated with CAL DAC based on measurement data

Outline

- Background
- ADC core architecture
- Calibration system
- Measurement results
- Conclusions

Chip Micrograph

- 0.18µm CMOS, 1-poly, 6-metal Layers, MIM Capacitor
- Control logics are composed of an off chip FPGA

Measured Spectrum

Dynamic Performance

ADC Performance Summary 1

Technology	0.18µm, 1poly, 6metal CMOS
Resolution	10bit
Active Area	95μm x 550μm=0.05mm²
Sampling Rate	1MSps (12MHz clock)
SNDR@nyquist	51.1dB
SFDR@nyquist	69.8dB
Full Scale Voltage	2.2Vppd
Power Supply	1.8V
Power Consumption	110µW(Analog)

ADC Performance Summary 2

- [1] J. Craninckx, et. al., "A 65fJ/Conversion-Step, 0-to-50MS/s 0-to-0.7mW 9bit Charge-Sharing SAR ADC in 90nm Digital CMOS", *ISSCC 2007*
- [2] Y. Jeon, et. al., "A 4.7mW 0.32mm2 10b 30MS/s Pipelined ADC Without a Front-End S/H in 90nm CMOS", ISSCC 2007

Conclusions

- A 0.05-mm² 110-μW 10-b SAR ADC core:
- 0.18µm CMOS
- Minimizing total capacitance based on SNR
- Minimizing the area of lower bit DAC with series connection of binary DAC
- Main DAC with low accuracy small capacitors calibrated by CAL DAC, SNDR:9.0dB, SFDR:23.3dB improvement