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Abstract — Recent advances have shown that all digital phase
locked loops have several desirable advantages ovis analog
counterpart. One important element in the all digtal phase locked
loop is the digital controlled oscillator whose frguency resolution
restricts the frequency resolution of the entire sstem. In this
paper we propose a new structure for digital contrbed oscillators
utilizing the capacitance’s sensitivity dependencen position of the
shorted transmission line to increase the frequencyesolution. A
9GHz transmission line based digital controlled ositator was
fabricated as a proof of concept. Measured resultshow that more
than 100 times frequency step resolution increases ipossible
utilizing the same tuning capacitor size located atlifferent points
in the transmission line.

l. INTRODUCTION

Interest in time domain signal processing of sigratl RF
frequencies have spurred an increased interegtcinits such as
all-digital phase locked loops. Aside from its adtages of
having less process, voltage and temperature (Repgndence
it also allows such techniques as direct frequemogulation
[1,2], and allows ease of implementation of fasttliag
techniques such as dynamic filter bandwidth conf8) and
direct reference feed-forwarding method [4,5].

In all-digital phase locked loop frequency synthess, one
of the design challenges is the design of a digitaitrolled
oscillator (DCO) with enough frequency controllingsolution
for accurate frequency synthesis, and wide enougimg range
for PVT calibration. For example [6] utilizes 7-bbinary
resolution for PVT calibration, 64-bit unit for adgition, 128-
bit unit for tracking, and 3 bit unit for fractionwacking. This
leads to more than 20bits tunable range. Such Higltamic
range requires capacitor of several orders of miffee in size,
and the resolution limit of the DCO is fundamemntajbverned
by the size of the capacitor that can be createokkig with
such wide range of capacitance sizes requires lEngcvery
small capacitances, for example [7] mentions uiizMOS
varactors with as small as 50aF in 90nm CMOS teolgyo
Switching such small capacitors will be difficuk awitch and
varactor biasing parasitic capacitance can easiget the size
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of the capacitor. In addition, these parasitic bfgms will

become more significant at higher frequencies. il&\hsing

signal processing techniques to increase the afeotsolution
such as high speed delta sigma dithering is pesdiin example
[1] mentions 8 bit were dithered at 600 MHz to emse the
effective resolution, this is at the cost of sigraht power and it
would be desirable if these requirements coulddmeehsed.

In this paper we introduce aew DCO which helps to
alleviate the issue of controlling very small cdfawe. By
utilizing the characteristic of the capacitor's siéimity with
relation to its position on a shorted transmissibne
simultaneous wide frequency tuning range and vdne f
frequency tuning steps is achieved.

II.  SHORTEDTRANSMISSIONLINE RESONATORANALYSIS

It is well known that transmission lines can bdiagd as
resonators. In particular, shorted transmissinasliare popular
resonators as they exhibit anti-resonance whiclthés same
oscillation mode to the parallel LC tank commonlged in
differential oscillators. A typical transmissioméd resonator
based oscillator is shown in Fig. 1. It is gengriown that the
shorted transmission line will resonate in antbresce when its
electrical length isA/4. The input impedance looking into a
shorted transmission line length as in Fig. 2, and with
propagation constagis (1).
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Fig. 1. Typical Transmission line based resonatat voltage wave.
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Fig. 2. Shorted transmission line (a), and shdrgasmission line with input
capacitor (b).
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Fig. 3. Voltage amplitude of shorted transmissioa.|

Anti-resonance occurs when the impedance is maximvhith
occurs when the denominator is zero, making theedapce go
to infinity.
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Fig. 4. In terms of resonance frequency the fdlg approximation can be

made.
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Fig. 5. Capacitance in the middle of the transmisdine is reflected to an
equivalent input capacitance.
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capacitance C affects the drop in resonance frequency. It
should be noted that for a small

1
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to medium value o, and w with respect tg3 and | (7) holds
well. For example simulation has shown that@r= 0.1pF at
approximately 10GHz (7) is accurate to within 0.a%le for C_
=0.3pF it is accurate to within 6% in predicting thresonance
frequency. For 10GHz DCOs these values are reasonably large,
and so the accuracy of this equation should be gintm cover
circuits with reasonable tuning range. From (73 ihteresting to
note that in terms of the resonance frequency,ctme with

fo (7)

Where y ande.« are the phase velocity and the effective relativeloaded capacitor can be approximated with an etgriva

dielectric constant respectively. In general, tloitage as a
function of position on a shorted transmission lican be
expressed as

V(2) :V0+ [ﬂ](elmw[ﬂ—/)’ﬁ) _leUw[ﬂ"“/ﬂ)) ) (4)
Where[(f) represents the real part @f ‘andV," represents the
forward propagating voltage wave component. Theefaam of

a section of an approximate//4 shorted transmission line at
10GHz at one time instant is shown in Fig. 3. Tuerent
waveform is the opposite of the voltage wavefornthwthe
maximum current at the shorted end and zero cuaent4,
phase shifted b2 radians.

Usually a tuning capacitor or capacitor bank isceth as
shown in Fig.2 (b). Following the same methodiear(5) must
be satisfied for resonance to occur.

cospl)-wlC [Z,in(EO)=0. (5)
It is difficult to find a simple expression fapo from (5), (note
that B=w/vp). The approximation (6) can simplify the equation
to (5), leading to (7)
wl[C [Zy<<1 (6)

Note thatZ;=1/(v,*C’) [8] whereC’ is the capacitance per unit
length of the transmission line. Equ. (7) cleahpws how the

resonator without a capacitor but with a lengtheeston of
A=C/C’" as shown in Fig.4. This interpretation is hanady d
quick, intuitive estimation of how the resonanceqfriency will
change with different size capacitors.

Ill.  POSITIONBASED CAPACITANCE SENSITIVITY

From the voltage curve in Fig. 3 it is seen that Woltage
amplitude is highest at the input and zero at bwet<ircuit end.
Since the capacitance is related to the voltagecarrént over it,
it is reasonable to expect that the amount of geltand current
varying with the position of the transmission limeuld affect
the effective input impedance contribution of tlapacitance to
the transmission line. This impedance contribytionturn, is
expected to contribute to the resonance frequeriitgrehtly
according to the capacitance position on the tréssan line.

Approximations as to how much the capacitor conteb to
the resonance frequency when placed at an arbiasigion on
the transmission line are not straight forward. r Egample
following the previous method for finding the reaone
frequency and utilizing Taylor expansion estimatiati lead to
good prediction results, but the resulting equai®romplex,
difficult to interpret, and does not give an initugtidea as to how
the capacitance at various positions affects theorance
frequency.
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Fig. 6. Equivalent normalized reflected capaciaexample.

Fig. 7. Experimental prototype new DCO.

One method that can be utilized is using a capasta
transformationi.e., by reflecting the capacitor from any point on
the transmission line to the input as shown in FEg. The
equivalent input capacitance is found by equatirgequations
governing resonance condition of the circuits anfdiind to be

c'= G [%L] Bin[ﬂ 02 El_l)] E(to(ﬁ El_t]

2 Vp Vp
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From (8) for example, it can be readily calculathat the
effective capacitance located exactly in the middfe the
transmission line is equal to only half its valtiét iwere to be
located at the input of the transmission line. dffect on
resonance frequency is then estimated iterativelZp

Fig.6 shows an example of how the equivalent effed¢hput
capacitance value changes with respect to positibris seen
that the effective value of the capacitance deesass it
approaches the shorted end which is attributedéyect that as
the capacitor's position comes nearer to the smooist of the
current flows through the short making the capacks
contribution seen at the input decrease.

(8)

IV. USING THE CAPACITANCE SENSITIVITY INDCO

Analysis from section Ill opens up a great poténfa
designing digital controlled oscillators. The neance frequency
can now be tuned by, not only scaling the capaisize, but
also by varying the capacitor’s position alongsherted
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Fig. 8. Oscillation frequency vs switching positfoom open end.
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Fig.9. Frequency step vs distance from open end.

transmission line. This means that to realize fireuency

tuning steps, instead of trying tmontrol very small capacitors,
medium size capacitors can simply be placed nearstiorted

end giving effectively fine tuning steps while adioig being

overwhelmed by parasitic capacitance such as tlva fthe

switch. Ideally, infinitely small frequency stepan be achieved
simply by placing capacitors closer to shorted entile the

practical limit is determined by how accurate thers circuit is,

and knowing its exact position. For larger tunisteps,

capacitors should be placed near the open end wihere
capacitance’s sensitivity is highest. The genetaaiof the new
resonator is shown in Fig. 7 where C1 to CN mayesgnt one
capacitor or a capacitor bank.

This paper proposes a new DCO using the capacitance
sensitivity in relation to its position on a shartgansmission
line to increase the resolution to the DCO shownFig.7.
Capacitors CO to C6 are distributed along the trégsion line
using the same medium size MOS capacitors of 88@ftehing
step. Capacitor C7 is placed nearly parallel i@y however, it
utilizes minimum size MOS transistor for Oif8 CMOS
process. The transmission line was made from oaplatrip
lines (CSL) and a noise filtering capacitor wascpthto filter up
converted current source noise [9].

V. MEASUREMENT

The experimental circuit was fabricated in a8 CMOS
process. Due to the large number of control inphts on wafer
probes were used only for the internal VCO, outpuffer
biasing and for measuring the output signal. Tbetrol pins
were wire bonded manually to a packagkee package was
placed on a printed circuit board and controllechuadly from
the outside.
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Fig. 10. Measured phase noise.

External amplification and frequency division by&fore being
analyzed by the VCO analyzer was necessary duketd/€CO
analyzer’s limited frequency range.

The capacitors were switched between
capacitance one by one and the oscillation frequemes
measured. The rescaled measured result (sincéetyeency
was divided by 2 for measurement) is shown in Fighlle the
resulting frequency step is shown in Fig.9. Asested, the
oscillation frequency changed with the positiorttef capacitors
switched on even though the sizes of the capaaiarshe same.
The oscillation frequency exhibit a curve inversétte effective
capacitor switching position as shown in Fig.6 apeeted.
Maximum frequency step using the medium size MQ&citor
placed furthest away from the shorted end was BMa6while
minimum step size for the same medium size MOS aitapa
placed near the shorted end (tBOfrom short) was 3.45MHz
proving that changing only the position of the cama alone
could change the frequency tuning sensitivity byrenthan
100times. The minimum size capacitor placed at@apmately
the same position as the medium size capacitortheashorted
end showed a measured frequency step of less OkHZ at
9GHz. It is possible to increase the frequencp stensitivity
and achieve even greater tuning control resoluipplacing the
capacitors nearer to the shorted end.

The measured phase noise (PN) is shown in Fig. Tioe
oscillator's measured phase noise is -105 dBc/HM@A offset
at the oscillation frequency of 9.224 GHz (Measu&2i PN is -
111 dBc/Hz @1MHz). This phase noise is achievitd 5SmA
bias current at the supply voltage of 1.8V. Phasise can
potentially improved by ground shielding of the CSind
replacing the sensitive varactors with capacito switches.

VI. CONCLUSION

In this paper we have shown how the capacitance’s
sensitivity to position of the shorted distributegonator can be

used to control the oscillation frequency. A 9GBHIZO was
designed, and measurement results confirm that fihe
frequency tuning can be achieved by varying theacim's
position on the shorted transmission line. Measuesults show

low and high

Fig. 11. Chip photo.

that more than 10@imes frequency step change can be achieved

by varying the position of loading capacitor alon€his enables
an extra dimension in design of digital controlledcillator
potentially offering both wide tuning range andefifrequency
tuning simultaneously. Due to the potential toue the
frequency step size in the ADPLL, fine frequencgpst for
future higher frequency oscillators is possible levhithe
requirements for high speed delta sigma ditheriralct
potentially could be reduced.
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