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Abstract    —    Recent advances have shown that all digital phase 
locked loops have several desirable advantages over its analog 
counterpart.  One important element in the all digital phase locked 
loop is the digital controlled oscillator whose frequency resolution 
restricts the frequency resolution of the entire system.  In this 
paper we propose a new structure for digital controlled oscillators 
utilizing the capacitance’s sensitivity dependence on position of the 
shorted transmission line to increase the frequency resolution.  A 
9GHz transmission line based digital controlled oscillator was 
fabricated as a proof of concept.  Measured results show that more 
than 100 times frequency step resolution increase is possible 
utilizing the same tuning capacitor size located at different points 
in the transmission line.   

I. INTRODUCTION  

Interest in time domain signal processing of signals at RF 
frequencies have spurred an increased interest in circuits such as 
all-digital phase locked loops.  Aside from its advantages of 
having less process, voltage and temperature (PVT) dependence 
it also allows such techniques as direct frequency modulation 
[1,2], and allows ease of implementation of fast settling 
techniques such as dynamic filter bandwidth control [3], and 
direct reference feed-forwarding method [4,5]. 

In all-digital phase locked loop frequency synthesizers, one 
of the design challenges is the design of a digital controlled 
oscillator (DCO) with enough frequency controlling resolution 
for accurate frequency synthesis, and wide enough tuning range 
for PVT calibration.  For example [6] utilizes 7-bit binary 
resolution for PVT calibration, 64-bit unit for acquisition, 128-
bit unit for tracking, and 3 bit unit for fractional tracking.  This 
leads to more than 20bits tunable range.  Such high dynamic 
range requires capacitor of several orders of difference in size, 
and the resolution limit of the DCO is fundamentally governed 
by the size of the capacitor that can be created. Working with 
such wide range of capacitance sizes requires switching very 
small capacitances, for example [7] mentions utilizing MOS 
varactors with as small as 50aF in 90nm CMOS technology.  
Switching such small capacitors will be difficult as switch and 
varactor biasing parasitic capacitance can easily exceed the size 

of the capacitor.  In addition, these parasitic problems will 
become more significant at higher frequencies.   While using 
signal processing techniques to increase the effective resolution 
such as high speed delta sigma dithering is possible; for example 
[1] mentions 8 bit were dithered at 600 MHz to increase the 
effective resolution, this is at the cost of significant  power and it 
would be desirable if these requirements could be decreased. 

In this paper we introduce a new DCO which helps to 
alleviate the issue of controlling very small capacitance. By 
utilizing the characteristic of the capacitor’s sensitivity with 
relation to its position on a shorted transmission line 
simultaneous wide frequency tuning range and very fine 
frequency tuning steps is achieved.   

II. SHORTED TRANSMISSION LINE RESONATOR ANALYSIS 

It is well known that transmission lines can be utilized as 
resonators.  In particular, shorted transmission lines are popular 
resonators as they exhibit anti-resonance which is the same 
oscillation mode to the parallel LC tank commonly used in 
differential oscillators.  A typical transmission line resonator 
based oscillator is shown in Fig. 1. It is generally known that the 
shorted transmission line will resonate in anti-resonance when its 
electrical length is λ/4. The input impedance looking into a 
shorted transmission line length l, as in Fig. 2, and with 
propagation constant β is (1). 
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Fig. 1.  Typical Transmission line based resonator and voltage wave. 
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Fig. 2. Shorted transmission line (a), and shorted transmission line with input 

capacitor (b). 

 
Fig. 3. Voltage amplitude of shorted transmission line. 

 
Anti-resonance occurs when the impedance is maximum, which 
occurs when the denominator is zero, making the impedance go 
to infinity.  
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Then the resonance frequency can be found as 
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Where vp and εreff are the phase velocity and the effective relative 
dielectric constant respectively.  In general, the voltage as a 
function of position on a shorted transmission line can be 
expressed as 
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Where ℜ(f) represents the real part of ‘f’, and V0
+ represents the 

forward propagating voltage wave component.  The waveform of 
a section of an approximately λ/4 shorted transmission line at 
10GHz at one time instant is shown in Fig. 3.  The current 
waveform is the opposite of the voltage waveform with the 
maximum current at the shorted end and zero current at λ/4, 
phase shifted by π/2 radians. 

Usually a tuning capacitor or capacitor bank is placed as 
shown in Fig.2 (b).  Following the same method earlier, (5) must 
be satisfied for resonance to occur. 
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It is difficult to find a simple expression for ω from (5), (note 
that β=ω/vp).  The approximation (6) can simplify the equation 
to (5), leading to  (7) 
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Note that Z0=1/(vp*C’)  [8] where C’ is the capacitance per unit 
length of the transmission line. Equ. (7) clearly shows how the  

 
Fig.  4.  In terms of resonance frequency the following approximation can be 
made. 

 
Fig. 5. Capacitance in the middle of the transmission line is reflected to an 
equivalent input capacitance. 
 
capacitance CL affects the drop in resonance frequency.  It 
should be noted that for a small 
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to medium value of CL and ω with respect to β and l (7) holds 
well.  For example simulation has shown that for CL = 0.1pF at 
approximately 10GHz (7) is accurate to within 0.5% while for CL 
=0.3pF it is accurate to within 6% in predicting the resonance 
frequency.  For 10GHz DCOs these values are reasonably large,  
and so the accuracy of this equation should be enough to cover 
circuits with reasonable tuning range. From (7) it is interesting to 
note that in terms of the resonance frequency, the case with 
loaded capacitor can be approximated with an equivalent 
resonator without a capacitor but with a length extension of 
∆l=CL/C’ as shown in Fig.4.  This interpretation is handy for a 
quick, intuitive estimation of how the resonance frequency will 
change with different size capacitors. 

III.  POSITION BASED CAPACITANCE SENSITIVITY  

From the voltage curve in Fig. 3 it is seen that the voltage 
amplitude is highest at the input and zero at the short circuit end.  
Since the capacitance is related to the voltage and current over it, 
it is reasonable to expect that the amount of voltage and current 
varying with the position of the transmission line would affect 
the effective input impedance contribution of the capacitance to 
the transmission line.  This impedance contribution, in turn, is 
expected to contribute to the resonance frequency differently 
according to the capacitance position on the transmission line.   

Approximations as to how much the capacitor contributes to 
the resonance frequency when placed at an arbitrary position on 
the transmission line are not straight forward.  For example 
following the previous method for finding the resonance 
frequency and utilizing Taylor expansion estimation will lead to 
good prediction results, but the resulting equation is complex, 
difficult to interpret, and does not give an intuitive idea as to how 
the capacitance at various positions affects the resonance 
frequency.  
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Fig. 6.  Equivalent normalized reflected capacitance example. 
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Fig. 7. Experimental prototype new DCO. 

 
One method that can be utilized is using a capacitance 

transformation, i.e., by reflecting the capacitor from any point on 
the transmission line to the input as shown in Fig. 5.  The 
equivalent input capacitance is found by equating the equations 
governing resonance condition of the circuits and is found to be 
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From (8) for example, it can be readily calculated that the 
effective capacitance located exactly in the middle of the 
transmission line is equal to only half its value if it were to be 
located at the input of the transmission line.  Its effect on 
resonance frequency is then estimated iteratively by (7). 

Fig.6 shows an example of how the equivalent effective input 
capacitance value changes with respect to position.  It is seen 
that the effective value of the capacitance decreases as it 
approaches the shorted end which is attributed by the fact that as 
the capacitor’s position comes nearer to the short, most of the 
current flows through the short making the capacitance’s 
contribution seen at the input decrease.     

IV.  USING THE CAPACITANCE SENSITIVITY IN DCO 

Analysis from section III opens up a great potential for 
designing digital controlled oscillators.  The resonance frequency 
can now be tuned by, not only scaling the capacitors size, but 
also by varying the capacitor’s position along the shorted  

 
Fig. 8. Oscillation frequency vs switching position from open end. 

 

 
Fig.9. Frequency step vs distance from open end. 

 
transmission line.  This means that to realize fine frequency 
tuning steps, instead of trying to control very small capacitors, 
medium size capacitors can simply be placed near the shorted 
end giving effectively fine tuning steps while avoiding being 
overwhelmed by parasitic capacitance such as that from the 
switch.  Ideally, infinitely small frequency steps can be achieved 
simply by placing capacitors closer to shorted end, while the 
practical limit is determined by how accurate the short circuit is, 
and knowing its exact position.  For larger tuning steps, 
capacitors should be placed near the open end where the 
capacitance’s sensitivity is highest. The general idea of the new 
resonator is shown in Fig. 7 where C1 to CN may represent one 
capacitor or a capacitor bank. 

This paper proposes a new DCO using the capacitance’s 
sensitivity in relation to its position on a shorted transmission 
line to increase the resolution to the DCO shown in Fig.7.  
Capacitors C0 to C6 are distributed along the transmission line 
using the same medium size MOS capacitors of 800fF switching 
step.  Capacitor C7 is placed nearly parallel with C6, however, it 
utilizes minimum size MOS transistor for 0.18µm CMOS 
process.  The transmission line was made from coplanar strip 
lines (CSL) and a noise filtering capacitor was placed to filter up 
converted current source noise [9]. 

V. MEASUREMENT  

The experimental circuit was fabricated in 0.18µm CMOS 
process.  Due to the large number of control inputs, the on wafer 
probes were used only for the internal VCO, output buffer 
biasing and for measuring the output signal.  The control pins 
were wire bonded manually to a package, the package was 
placed on a printed circuit board and controlled manually from 
the outside. 
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Fig. 10.  Measured phase noise. 

 
External amplification and frequency division by 2 before being 
analyzed by the VCO analyzer was necessary due to the VCO 
analyzer’s limited frequency range. 

The capacitors were switched between low and high 
capacitance one by one and the oscillation frequency was 
measured.  The rescaled measured result (since the frequency 
was divided by 2 for measurement) is shown in Fig.8 while the 
resulting frequency step is shown in Fig.9.  As expected, the 
oscillation frequency changed with the position of the capacitors 
switched on even though the sizes of the capacitors are the same.  
The oscillation frequency exhibit a curve inverse to the effective 
capacitor switching position as shown in Fig.6 as expected.  
Maximum frequency step using the medium size MOS capacitor 
placed furthest away from the shorted end was 372.6MHz while 
minimum step size for the same medium size MOS capacitor 
placed near the shorted end (150µm from short) was 3.45MHz 
proving that changing only the position of the capacitor alone 
could change the frequency tuning sensitivity by more than 
100times.  The minimum size capacitor placed at approximately 
the same position as the medium size capacitor near the shorted 
end showed a measured frequency step of less than 100kHz at 
9GHz.  It is possible to increase the frequency step sensitivity 
and achieve even greater tuning control resolution by placing the 
capacitors nearer to the shorted end. 

The measured phase noise (PN) is shown in Fig. 10.  The 
oscillator’s measured phase noise is -105 dBc/Hz @1MHz offset 
at the oscillation frequency of 9.224 GHz (Measured %2 PN is -
111 dBc/Hz @1MHz).    This phase noise is achieved with 5mA 
bias current at the supply voltage of 1.8V.  Phase noise can 
potentially improved by ground shielding of the CSL and 
replacing the sensitive varactors with capacitors and switches.  

VI. CONCLUSION 

In this paper we have shown how the capacitance’s 
sensitivity to position of the shorted distributed resonator can be 
used to control the oscillation frequency.  A 9GHz DCO was 
designed, and measurement results confirm that the fine 
frequency tuning can be achieved by varying the capacitor’s 
position on the shorted transmission line.  Measured results show 

 
 

Fig. 11.  Chip photo. 
 

that more than 100 times frequency step change can be achieved 
by varying the position of loading capacitor alone.   This enables 
an extra dimension in design of digital controlled oscillator 
potentially offering both wide tuning range and fine frequency 
tuning simultaneously.  Due to the potential to reduce the 
frequency step size in the ADPLL, fine frequency steps for 
future higher frequency oscillators is possible while the 
requirements for high speed delta sigma dithering could 
potentially could be reduced. 
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