Fine and Wide Frequency Tuning Digital Controlled Oscillators Utilizing Capacitance Position Sensitivity in Distributed Resonators

<u>Win Chaivipas</u>, Takeshi Ito, Takashi Kurashina, Kenichi Okada and Akira Matsuzawa

Tokyo Institute of Technology, Tokyo, Japan

Outline

- Background
- Proposed Circuit
- Design Method
- Prototype DCO and Measurements
- Conclusion

Outline

- Background
- Proposed Circuit
- Design Method
- Prototype DCO and Measurements
- Conclusion

Phase Locked Loop

ADPLL Overview

Recently GHz freq. all-digital phase locked loop (ADPLL) shown practical

Advantages of ADPLL

- Robust to variation process, voltage, temperature (PVT)
- Technology Scaling

better with low voltage, sharper signal edges

DSP Enhancement

Dynamic parameter control, calibration

•Promising multi-band inherent adaptability

Challenges of ADPLL

Critical Interface Elements

TDC limits loop feedback resolution DCO limits synthesized frequency resolution

• Complexity

compared to traditional PLL, $\Delta\Sigma$, DEM, overhead calculation

 Excess Power Consumption from ΔΣ, DEM, overhead calculation

Challenges of ADPLL

Critical Interface Elements

TDC limits loop feedback resolution DCO limits synthesized frequency resolution

• Complexity

compared to traditional PLL, $\Delta\Sigma$, DEM, overhead calculation

Excess Power Consumption

from $\Delta\Sigma$, DEM, overhead calculation

Challenges of ADPLL

Critical Interface Elements

TDC limits loop feedback resolution

DCO limits synthesized frequency resolution

• Complexity

compared to traditional PLL, $\Delta\Sigma$, DEM, overhead calculation

Excess Power Consumption

from $\Delta\Sigma$, DEM, overhead calculation

Inside the DCO

DCO freq. step \propto ADPLL's freq. resolution

DCO freq. step \propto ADPLL's freq. resolution

1. Small cap. (50aF) used for fine freq. step DCO [1] Staszewski,2005, JSSC

 $VCO_N \rightarrow VCO_P$ parasitic cap 2. High freq. dithering increase freq. resolution

DCO freq. step \propto ADPLL's freq. resolution

1. Small cap. (50aF) used for fine freq. step DCO [1] Staszewski,2005, JSSC

2. High freq. dithering increase freq. resolution

High Freq. dithering Increase Power consumption, add noise into system

Dithering Noise

Phase Noise Due to Quantization

Challenges faced in DCO now (2GHz)

Parasitic cap. becomes more significant
 Mismatch leads to greater freq. deviation
 Dithering methods must be run at higher freq.

Outline

- Background
- Proposed Circuit
- Design Method
- Prototype DCO and Measurements
- Conclusion

Proposed Circuit

Distributed Resonators

Current and voltage varies with position, should the cap.'s freq. contribution vary with position too?

Current Into Cap. VS Position

Resonance Frequency

resonance freq. is

resonance freq. is

$$f_0 = \frac{v_p}{4 \cdot l} = \frac{1}{4 \cdot l \cdot \sqrt{\mu_0 \cdot \varepsilon_0 \cdot \varepsilon_{reff}}} \quad f_0 \approx \frac{1}{4 \cdot (l \cdot \sqrt{\mu_0 \cdot \varepsilon_0 \cdot \varepsilon_{reff}} + C_L \cdot Z_0)}$$

Extra factor proportional to load and characteristic impedance of T-line

Capacitance Equivalent Length

$$f_{0} \approx \frac{1}{4 \cdot (l \cdot \sqrt{\mu_{0} \cdot \varepsilon_{0} \cdot \varepsilon_{reff}} + C_{L} \cdot Z_{0})}$$

$$f_{0} \approx \frac{1}{4 \cdot ((l + C_{L} / C') \cdot \sqrt{\mu_{0} \cdot \varepsilon_{0} \cdot \varepsilon_{reff}})}$$

extended length $\Delta I = C_L/C'$ C' = T-line cap. per unit length

Calculated and Simulated Values

Outline

- Background
- Proposed Circuit
- Design Method
- Prototype DCO and Measurements
- Conclusion

Equivalent Capacitance

$$C_{L}' = \frac{C_{L}}{2} + \left(\frac{C_{L}}{2}\right) \cdot \sin\left(\frac{\omega}{v_{p}} \cdot (2 \cdot L1)\right) \cdot \cot\left(\frac{\omega}{v_{p}} \cdot Lt\right) - \left(\frac{C_{L}}{2}\right) \cdot \cos\left(\frac{\omega}{v_{p}} \cdot (2 \cdot L_{1})\right)$$

For L=Lt/2 at resonance

 $C_L' = \frac{C_L}{2}$ $C_L = \text{loading cap}$ $C_L' = \text{equivalent loading cap}$

Equivalent Capacitance Plot

Simulation VS Calculation

Sim. vs Cal. of equivalent capacitance method

Outline

- Background
- Proposed Circuit
- Design Method
- Prototype DCO and Measurements
- Conclusion

Design Method

- **1. Characterize T-line of arbitrary size**
- 2. Estimate needed T-line size and input cap. size for a freq. step using

$$f_0 \approx \frac{1}{4 \cdot (l \cdot \sqrt{\mu_0 \cdot \varepsilon_0 \cdot \varepsilon_{reff}} + C_L \cdot Z_0)}$$
(1)

- 3. Estimate actual cap. size and cap. position using the equiv. cap. equation and (1)
- 4. Create actual T-line with estimated tap positions for cap.
- 5. Simulate whole system, and iterate until correct

Prototype DCO

- 8 steps total Steps 1-7 mid size MOS cap (C0-C6) Step 8 min size MOS cap
 - (C7)
- Coplanar Strip Line
 9GHz center frequency
- 0.18 um CMOS, 6 metal process

Chip Photo

Measurement Frequency Step

Phase Noise Measurement

Performance Summary

Process	0.18um CMOS	
Resonance Frequency	9.2 GHz	
Power supply	1.8V	
Bias Current	5mA	
Frequency Step outer	376MHz	
Frequency Step inner	3.45MHz	
Min step	< 100Khz	
Phase Noise	-105dBc/Hz @1MHz	
Q at 9GHz (sim)	6.8	

Possible Impact, Challenges

Process	cap	Center Freq	freq step	
130nm	38aF	2.4GHz	23KHz (cal.)	[2]
90nm	50aF	3.6GHz/2=1.8GHz	20KHz (cal.)	[3]
90nm	50aF	11.15GHz/5=2.23GHz	160Hz (sim.)	This*

*Predicted using, 3000um TL, cap 50um from short •Slight more difficult to predict resonance freq. than LC case

Making real linear DCO slightly more difficult Calibration necessary (same as LC)

[2] Staszewski, JSSC Dec.04[3] Staszewski, JSSC May 06

Conclusion

- Spatial Cap. Sensitivity Exists in Distributed Resonators
- Spatial Sensitivity shown in design of oscillators w/ very fine freq. step and large calibration range
- Better freq. step resolution is possible, practically limited by accuracy of short on distributed resonator

Reference

- R. B. Staszewski, C. Hung, N. Barton, M Lee and D. Leipold, "A Digitally Controlled Oscillator in a 90 nm Digital CMOS Process for Mobile Phones", IEEE J. Solid-State Circuits, Vol. 40, pp. 2203-2211, November 2005.
 R.B. Staszewski, "All-Digital TX Frequency Synthesizer and Discrete-Time Receiver for Bluetooth Radio in 130nm CMOS", J. Solid-State Circuits, Dec. 2004
- [3] R.B. Staszewski, "A Digitally Controlled Oscillator System for SAW-Less Transmitters in Cellular Handsets", J. Solid-State Circuits, May 2006

Thank you for your Attention!

Questions?

win_chaivipas@ssc.pe.titech.ac.jp

Extra

Cal. Error Resonance Calculation

Calculation Error Equ. Cap Method

Taylor Approximation Error

