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ADPLL Overview

Recently GHz freq. all-digital phase locked 
loop (ADPLL) shown practical
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Advantages of ADPLL

•Robust to variation
process, voltage, temperature (PVT)

•Technology Scaling
better with low voltage, sharper signal edges

•DSP Enhancement
Dynamic parameter control, calibration

•Promising multi-band
inherent adaptability
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Challenges of ADPLL

• Complexity
compared to traditional PLL, ∆Σ∆Σ∆Σ∆Σ, DEM, 
overhead calculation

• Critical Interface Elements
TDC limits loop feedback resolution

DCO limits synthesized frequency resolution

• Excess Power Consumption
from ∆Σ∆Σ∆Σ∆Σ, DEM, overhead calculation
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Inside the DCO
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DCO Challenges 1

DCO freq. step ∝∝∝∝ ADPLL’s freq. resolution
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DCO Challenges 1

DCO freq. step ∝∝∝∝ ADPLL’s freq. resolution

1.Small cap. (50aF) used 
for fine freq. step DCO 
[1] Staszewski,2005, JSSC

2. High freq. dithering 
increase freq. 
resolution 

∑∆
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DCO Challenges 1

Difficult to control the 
small cap., mis-match, 
parasitic are problematic

High Freq. dithering 
Increase Power 
consumption, add 
noise into system

DCO freq. step ∝∝∝∝ ADPLL’s freq. resolution

1.Small cap. (50aF) used 
for fine freq. step DCO 
[1] Staszewski,2005, JSSC

2. High freq. dithering 
increase freq. 
resolution 
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Dithering Noise
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quantization noise
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DCO Challenges 2

Challenges faced in DCO now (2GHz)

Problem will increase in future for higher freq. 
(5GHz and beyond) DCO when

1.Parasitic cap. becomes more significant
2.Mismatch leads to greater freq. deviation
3.Dithering methods must be run at higher freq.
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Proposed Circuit

Present DCO
resonators Distributed DCO resonator using 

present tuning techniques

Proposed DCO resonator
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Distributed Resonators

Current and voltage varies 
with position, should the 
cap.’s freq. contribution 
vary with position too?

Voltage 

Amplitude Voltage 

Wave

Position from 

Short

Current 

Amplitude
Current 

Wave

Position from 

Short



20

Current Into Cap. VS Position

Effect of cap. 
decreases as it 
nears short end

How to find the 
resonance freq. 
of the T-line with 
cap in middle?shorted 

end

Open  
end

Current
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Resonance Frequency
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Capacitance Equivalent Length
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Equivalent Capacitance














⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅








−−−−













⋅⋅⋅⋅⋅⋅⋅⋅














⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅








++++==== )(coscot)(sin'

1
2

2
12

22
L

v

ωC
Lt

v

ω
L

v

ωCC
C

p

L

pp

LL
L

For L=Lt/2 at resonance

2

L
L

C
C ====' CL = loading cap

CL’ = equivalent loading cap



26

Equivalent Capacitance Plot
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Simulation VS Calculation
Sim. vs Cal. of equivalent capacitance method
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Design Method

1. Characterize T-line of arbitrary size
2. Estimate needed T-line size and input cap. size for 

a freq. step using
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3. Estimate actual cap. size and cap. position using the 
equiv. cap. equation and (1)

(1)

4. Create actual T-line with estimated tap positions 
for cap. 

5. Simulate whole system, and iterate until correct 
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Prototype DCO

VDD

VDD

2 0

Vcon

C7

C0

VDD

• 8 steps total
Steps 1-7 mid size MOS cap
(C0-C6) 
Step 8 min size MOS cap 
(C7)

• Coplanar Strip Line
9GHz center frequency

• 0.18 um CMOS, 6 metal 
process
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Phase Noise Measurement
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Performance Summary

Process 0.18um CMOS

Resonance Frequency 9.2 GHz

Power supply 1.8V 

Bias Current 5mA

Frequency Step outer 376MHz

Frequency Step inner 3.45MHz

Min step < 100Khz

Phase Noise -105dBc/Hz @1MHz

Q at 9GHz (sim) 6.8
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Possible Impact, Challenges

[2] Staszewski, JSSC Dec.04
[3] Staszewski, JSSC May 06

*Predicted using, 3000um TL, cap 50um from short
•Slight more difficult to predict resonance freq. than 

LC case

•Making real linear DCO slightly more difficult 
•Calibration necessary (same as LC)

Process cap Center Freq freq step

130nm 38aF 2.4GHz 23KHz (cal.) [2]

90nm 50aF 3.6GHz/2=1.8GHz 20KHz (cal.) [3]

90nm 50aF 11.15GHz/5=2.23GHz 160Hz (sim.) This*
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Conclusion

• Spatial Cap. Sensitivity Exists in 
Distributed Resonators

• Spatial Sensitivity shown in design of 
oscillators w/ very fine freq. step and large 
calibration range

• Better freq. step resolution is possible, 
practically limited by accuracy of short on 
distributed resonator
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Questions?
win_chaivipas@ssc.pe.titech.ac.jp
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Extra
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Cal. Error Resonance Calculation
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Calculation Error Equ. Cap Method
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Taylor Approximation Error
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