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Abstract—A 14-bit digitally calibrated digital-to-analog 
converter (DAC) is presented. This DAC uses a simple current 
comparator for the current measurement during calibration 
instead of a high-resolution ADC. Therefore, compared to a 
calibration scheme utilizing a high-resolution ADC, a faster 
calibration cycle is possible with smaller additional circuits. To 
reduce the additional area for calibration and error 
compensation, the lowest 8-bit DAC is used for both error 
correction and for normal operation; the additional DACs 
required for calibration are only of 3-bit and of 7-bit resolution. 
Nevertheless, a large calibration range is attained. Full 14-bit 
resolution is achieved on a small chip-area (0.72 mm2). The 
measurement results show that the spurious free dynamic range 
is 83.4 (46.6) dBc for signals of 6 kHz (30 MHz) at an update 
rate of 100 MS/s. 

I. INTRODUCTION 
For telecommunication applications, digital-to-analog 

converters (DACs) with a resolution of 10–14 bit at a 
conversion rate of several hundred MS/s are required. To 
fulfill such challenging specifications, current-steering DACs 
are widely used at present. The resolution of a current-steering 
DAC is limited by the mismatch of the elements that compose 
the DAC’s current sources. Therefore, in order to obtain a 
high resolution, it is necessary to control the mismatch of the 
elements by enlarging their area. However, by increasing their 
size the parasitic capacitances, as well as the wiring 
capacitances, are augmented and the DAC's resulting 
conversion speed may not satisfy the desired specifications at 
low power levels. Furthermore, increased area also means 
increased cost; the area of the current-steering DAC should 
therefore be kept small. A high speed, high resolution DAC 
can be achieved by applying a calibration scheme [1–4].  

 

In this paper, a novel digital calibration scheme is 
proposed that is applied to the binary-weighted part of the 
DAC. Digital calibration schemes measure the current value 
of each current source and—by means of digital signal 
processing—determine an appropriate value that will be added 
from a calibration DAC. To measure the values of each 
current source, the use of an accurate high-resolution sigma-
delta analog-to-digital converter (ADC) has been proposed [1-
3]. This additional sigma-delta ADC enlarges the die-area and 

therefore increases the cost of the chip. In addition, calibration 
schemes using a sigma-delta ADC are slow due to high over-
sampling ratios that are required to achieve a high resolution. 
To overcome these disadvantages, another scheme was 
proposed in [4] using current comparators instead of a high 
resolution ADC. In addition, this scheme chooses a binary-
weighted structure. Binary-weighted DACs (as opposed to 
thermometer-decoded DACs) are more suitable for digital 
calibration as there are fewer current sources that need to be 
measured; this reduces the die-area of the memory and 
shortens the calibration time. However, a calibration DAC is 
required at each current source of the MSB array in [4]. This 
scheme therefore also enlarges the total die area. 

The proposed scheme utilizes the LSB-part of the DAC for 
conversion as well as for calibration. The analog circuitry is 
only marginally increased as the calibration is mainly done in 
the digital domain. Consequently, the DAC’s total die area is 
still small; nevertheless, a high resolution is achieved. Shifting 
the main part of the calibration into the digital domain will 
become even more advantageous with future processes and for 
higher resolution DACs.  

The paper is structured as follows: after this brief 
introduction, the calibration algorithm is discussed in detail in 
Section II. The measurement results are presented in Section 
III. Finally, the paper ends with some conclusions in Section 
IV. 

II. THE DAC'S CALIBRATION SCHEME 
The architecture of the proposed digitally calibrated DAC 

is shown in Fig. 1. The DAC is segmented into the following 
parts: “MAINDAC” (consisting of a 6-bit “MSBDAC” and an 
8-bit “LSBDAC”), “CALDAC” (3 bit), “SUBDAC” (7 bit), 
the current mirror array (6 bit), the current comparator, the 
output stage, and the calibration logic. Each DAC is composed 
of a current-source array and switches. The MSB array, the 
CAL array, the SUB array, and the current mirror array each 
need to have one additional dummy current source, which is 
of the same current value as each array’s lowest current. All 
current sources and current mirrors are composed of 
conventional low voltage cascodes.  

The output stage is composed of PMOS current sources 
folding the DAC current and a return-to-zero (RZ) circuit [2]. 
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Figure 1.  Block diagram of the proposed calibrated DAC. 

The MSB array will be self-calibrated. In the proposed 
self-calibration scheme, the MSB dummy current source 
(ICMSB0) is calibrated before the 6-bit MSB current sources 
(IMSB0-IMSB5). The MSB dummy current calibration is called 
“SUB Calibration”, the calibration of the 6-bit MSB currents 
is called “MSB Calibration”. The deviation of the MSB 
dummy current from its nominal value is δ0; the deviations 
from the nominal values for the 6-bit MSB currents are from 
the lowest value to the highest δ1, δ2, δ3, δ4, δ5, and δ6.  

The calibration flow described in Fig. 2 is as follows: the 
first step in the proposed digital calibration method is to obtain 
the digitized value of the error current through a successive 
approximation process using the calibration current sources 
and a current comparator. The digital value of the error current 
is then used for the error correction in the digital domain. The 
calibrated output is composed of currents from the DAC for 
conversion, as well as of currents from the DAC for 
calibration.  

A. SUB Calibration 
The MSB dummy current source (ICMSB0) has the same 

nominal current as the sum of the LSB array and the CAL 
array (ILSBs). However, due to mismatch, the current sources 
show different output currents. During “Sub Calibration”, the 
error current of ICMSB0, δ0, will be determined. 

Using the current mirrors and the current comparator, 
ICMSB0 is compared with ILSBs, the sum of the LSB array and 
the CAL array. The current comparator circuit is depicted in 
Fig. 3. δ0 can be obtained as a 6-bit digital value by a 6-step 
successive approximation process utilizing SUBDAC, the 
current comparator output and the calibration logic. 

The simplified "SUB calibration" circuit is shown in Fig. 4. 
During calibration the current-sources are measured twice, 
once with the switches in position A and once in position B. 
By using two measurement results, δ0 is obtained 
independently of the current comparator offset (Ioffset). δ0 is 
then stored in a register. During normal operation, the error 
current of ICMSB0 is canceled out by correctly switching the 
SUBDAC. 

B. MSB Calibration 
After “SUB Calibration”, the 6-bit MSB current source 

array will be calibrated. At first, the error current of the lowest 
bit of the MSB currents, δ1, will be obtained.  

The lowest MSB current (IMSB0) is compared with ICMSB0 
using the current mirrors and the current comparator. Then, 
SUBDAC operates to cancel out δ0. 

 

Figure 2.  The calibration flow. 

 

Figure 3.  The current comparator. 
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Figure 4.  SUB calibration circuit. 

 

Figure 5.  MSB calibration circuit for IMSB0. 

δ1 is obtained as an 11-bit digital value by an 11-step 
successive approximation process utilizing LSBDAC (8 bit) 
and CALDAC (3 bit). This process is controlled by the current 
comparator output as well as the calibration logic. The 
simplified MSB calibration circuit for IMSB0 is shown in Fig. 5.  

Same as for the "Sub Calibration", the measurement is 
done twice, once in phase A and once in phase B. 

In the next phase, the error current corresponding to the 
second lowest MSB (δ2) will be determined: the second lowest 
MSB current (IMSB1) is compared with the sum of ILSBs and 
IMSB0. By using the previously determined error current δ1, δ2 
is obtained through an 11-step successive approximation 
process as an 11-bit digital value. 

In the same way, the error current of the other MSB 
current sources can be determined, each with an 11-step 
successive approximation process and with the previously 
determined error currents of the lower MSBs. 

III. DAC OPERATION 
The architecture for the DAC operation is shown in Fig. 6. 

All MSB error currents are stored in a register. Other than in a 
conventional DAC where the 8-bit DAC can produce output 
currents from 0 to 255 LSB, this converter’s 8-bit LSB block 
ranges from 0 to 511 LSB. This is because the MSB dummy 
current source is used for the 8-bit LSB conversion. If the 
MSB array current sources reveal no error, the 8-bit LSB part 

ranges from 128 LSB to 383 LSB. The MSB array can 
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Figure 6.  Block diagram of operation during normal conversion. 

therefore be calibrated in the large range of -128 LSB to +128 
LSB. 

The DAC inputs are divided into the 6-bit MSB data and 
the 8-bit LSB data. The 6-bit MSB data is used as the input to 
the six MSB switches and to the MSB memory.  

 

The 8-bit LSB data is added to the MSB memory’s output 
and its result controls the MSB dummy switch, the LSB 
switches, and the CAL switches. Either +δ0 or -δ0 is used as 
the input to the SUB switches, depending on the MSB dummy 
memory. 

In conventional calibration schemes, a large calibration 
range leading to a smaller MSBDAC area comes at the cost of 
a large CALDAC area. In this proposed scheme however, the 
8-bit LSBDAC is reused for the current correction and the 
large calibration range of 11 bit is realized by the small 
CALDAC with a resolution of only 3 bit. 

IV. MEASUREMENT RESULTS 
The proposed self-calibration architecture is realized in a 

0.18-µm CMOS technology; the supply-voltage is 1.8 V. The 
chip's layout is presented in Fig. 7; its active area is only 0.74 
mm2. 

Figs. 8 and 9 show the output spectrum at an update rate of 
100 MS/s for a 6-kHz input signal before and after calibration, 
respectively. The SFDR of the DAC is 69.2 dBc before 
calibration. The linearity is degraded due to mismatch in the 
current sources of the MSB array. After calibration, the SFDR 
is increased and becomes 83.4 dBc. The results indicate that 
the linearity is improved by the proposed digital calibration 
architecture and 14-bit level is achieved. 

Fig. 10 shows the SFDR of the calibrated DAC operating 
at an update rate of 100 MS/s for various input signal 
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frequencies. The SFDR of the DAC is 83.4 dBc at 6 kHz and 
46.6 dBc at 30 MHz input frequencies. Table I summarizes the 
measured DAC's characteristics. 

Figure 7.  Layout of the DAC. 
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Figure 8.  Output spectrum for a 6-kHz input signal before calibration. 
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Figure 9.  Output spectrum for a 6-kHz input signal after calibration. 

V. CONCLUSION 
A new digital calibration scheme for a current-steering 

DAC has been proposed. This scheme was applied to a binary-
weighted DAC that is—due to the minimal number of current-
sources—most suitable for a fast digital calibration. Because 
this scheme uses a single simple current comparator for the 
current measurement instead of a high-resolution ADC, a fast 
calibration cycle was attained and the additional circuitry 
could be kept minimal. Furthermore, using the LSB part of the 

DAC for both the error correction scheme as well as for the 
normal conversion, lead to an only minimal increase of die-
area. The additional analog circuits required for the digital 
calibration are only a 6-bit DAC and a 3-bit DAC.  
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Figure 10.  SFDR at an update rate of 100 MS/s after calibration. 

TABLE I.  MEASURED DAC CHARACTERISTICS  

 

Measurement results have revealed that the proposed 
digital calibration scheme can be used to achieve 14-bit level 
linearity. Before calibration, the SFDR of the DAC is 69.2 
dBc at an update rate of 100 MS/s for a 6-kHz input signal. 
After calibration, the SFDR is enhanced to 83.4 dBc. 
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