

Dynamic Reconfigurable Si CMOS VCO['] Using a Transmission-Line Resonator with PMOS-Bias and PMOS-Crosscouple Topology

Takeshi Ito, Win Chaivipas, Kenichi Okada, and Akira Matsuzawa

Tokyo Institute of Technology, Japan

Dec.14, 2007

TOKYO TIECH Pursuing Excellence

- (1) Background
- (2) Circuit topology of VCO
- (3) Experimental results
- (4) Conclusion

2. Background

Road-to-vehicle and vehicle-to-vehicle communication BS

BS-to-BS communication

ΤΠΚ

Pursuing Excellence

Uncompressed wireless HD transmission Miniaturization of Si CMOS process and improvement of packaging technology realize lower cost RF frontend circuits for millimeter wave application.

http://www.dlink.com/products/resource.asp?pid=438&rid=1635&sec=1

3. Motivation

VCOs using Si CMOS process have larger phase noise as compared with non-Si or SiGe.

To realize low-phase-noise VCO at higher frequencies,

Topology: NMOS-, PMOS-, or CMOS- cross-couple NMOS-, PMOS-, or No- current source LC or Transmission-line resonator

5. Purpose of this work

The PMOS cross-couple topology has lower phase-noise characteristic.

It is a little difficult to use at more than 20GHz frequencies because gate capacitance degrades quality factor of resonator.

As our conclusion, PMOS-cross-couple and PMOS current source topology is better for low-phase-noise VCO at around 10GHz.

6. Inductor or transmission line for resonator

TOKYO TIECH PursuingExcellence

For high qualify factor resonator,

	Inductor	Transmission line		
Inductance per unit length 1/(line loss)	large	small		
Coupling with Si substrate substrate loss	large	small		
Distribution of parasitic capacitance	Lumped	Distributed		
Frequency range for high quality factor	~20GHz	10GHz~		
Dec.14, 2007 T. Ito, Tokyo Tech.				

7. Simulation condition

- •Length of Transmission Line used as resonator are 0.5mm~1mm
- •Bias currents are optimized depending on W/L.
- •Oscillation frequency is equalized by using MIM capacitors.

8. Trade-offs between VCO topologies

Pursuing Excellence

Cross-couple type	CMOS	PMOS	NMOS
Signal swing	(V _{dd} -2V _{eff})	2x(V_{dd}-2V_{eff})	(V _{dd} -2V _{eff})
1/f noise source	medium	low	high
(noise generation)			
1/f noise sensitivity	low	high	high
(gain flatness)			
Total noise	medium	medium	high
Total phase noise (S/N)	medium	low	high
g _m per unit tail current and unit C _{gs}	medium	low	high
Tail current @max. voltage swing	medium	high	low
Cut-off frequency	medium	low	high

9. Trade-offs between PMOS and NMOS

 At less than 10MHz, PMOS-type MOS has 5 times smaller 1/f noise than NMOS.

•PMOS has lower g_m and larger parasitic capacitances.

10. PMOS and NMOS cross-couple

Pursuina Excellence

•Phase noise of PMOS cross-coupe is smaller at less than 12.5GHz

11. Microwave-band VCO

0.18µm Si CMOS process, PMOS type cross-couple is fabricated. Oscillation frequency: 12GHz, phase noise @1MHz offset: -113dBc/Hz IO buffer: inductive load, 2nd stage common source for high frequency operation

Dec.14, 2007

12. Measurement

Wide-band amplifier is used to compensate low VCO output power -7dBm.
Signal Source Analyzer can measure lower than 7GHz, signal divided by 2 is measured.

ΤΟΚΥΟ ΤΙΕΓ

13. Oscillation frequency and phase noise

Pursuing Excellence

	Simulation result	Measured result
Oscillation freq.	12.6GHz	12.4GHz
Phase noise@1MHz offset	-113.1dBc/Hz	-112.6dBc/Hz

Simulation results and measured results are almost same.

I explained trade-offs between VCO cross-couple topologies at more than 10GHz.

PMOS transistors have lower 1/f noise while they have larger gate capacitances.

In our comparison using circuit simulations, PMOS crosscoupled VCO has lower phase noise characteristic at less than 12.5GHz.

In experimental result, a phase noise is -112.6 dBc/Hz@1MHz offset, and Figure of Merit is -184.9 dBc/Hz.

The VCO is fabricated by a 180 nm Si CMOS process.

In this presentation, I showed the capability of PMOS crosscouple topology at more than 10GHz.

Dec.14, 2007

T. Ito, Tokyo Tech.

15. Acknowledgement

- This work was partially supported by JSPS. KAKENHI,
 MIC. SCOPE, and VDEC in collaboration with Cadence Design Systems, Inc., and Agilent Technologies Japan, Ltd.
- Special thanks to Masu lab., Tokyo tech. for offering RF measurement environment.

TOKYO TIECH Pursuing Excellence

Reference	Topology	Frequency	Output Power	Phase Noise	f_offset	PowerConsumption	Technology	FOM
			[dBm]	[dBc/Hz]	[MHz]	[mW]		
[1]	Injection locked	39.2-40.3	-8	-108.7	1	6.0	0.18 µm Si CMOS	-192.9
[2]	LCVCO	10.18-11.37		-118,7	1	11.8	0.18 μm Si CMOS	-188.6
This Work	TLVCO	11.8-12.4	-7.5	-112.6	1	8.6	0.18 µm Si CMOS	-184.9
[2]	LCVCO	19.84-22.01		-111.7	1	40.3	0.18 μm Si CMOS	-182.0
[3]	NMOS LCVCO	19.9		-111.0	1	32.0	0.18 µm Si CMOS	-181.9
[4]	Distributed Oscillator	40		-99.0	1	27.0	0.18 µm CMOS	-176.7
[2]	LCVCO	39.33-43.67		-102.0	1	115.9	0.18 μm Si CMOS	-173.7
[5]	balanced VCO	21.9-22.33	-0.3	-108.2	1	140.0	InGaP/GaAs HBT	-173.6
[6]	Colpitts	23-24.4	-	-94.0	1	22.0	BiCMOS	-168.1
[7]	Varactorless VCO	23.2-29.4		-96.2	3	36.5	0.13 μm Si CMOS	-159.4
[8]	Distributed Oscillator	11.03-11.19	_	-84.0	1	9.0	$0.35 \ \mu m$ Si Bipolar	-155.4

VCO PERFORMANCE COMPARISON.

$$FoM = -10\log\{L\Delta\omega\} + 20\log\frac{\omega_0}{\Delta\omega} + 10\log\frac{Power}{1\text{mW}}$$

Dec.14, 2007

T. Ito, Tokyo Tech.