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Motivation

O Decreasing supply voltages make it increasingly
difficult for analog circuits to work as they have

In the past

O All-Digital Phase-Locked Loop has recently been
reduced to overcome the problem of low voltage
for frequency synthesis

O Fast-frequency switching techniques are
necessary for frequency hopping systems, or fast
switching between frequency channels in future
wireless systems
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Outline

O Comparison between traditional charge-
pump and ADPLL

O Proposed feed-forward method

O Obtaining the feed-forward parameters
O Analysis

O Matlab simulation result

0 Design Example and Verilog-AMS
simulation

O Conclusion
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The Charge-Pumped based PLL VS
All-Digital PLL
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TDC/EDC explanation
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All-Digital PLL Mathematical Model

System Level Model of the ADPLL
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Conventional PLL Speed-up Technigues

Loop parameter adjustment is most common
» Adjustment of loop filter’s bandwidth
* Dynamic adjustment of loop gain by changing filter or charge-pump gain

Disadvantage
 Loop stability maybe compromised
« Difficult to design, designer must make sure the system is stable over
all combinations of loop parameters
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Speeding up the PLL’s Settling speed Via
Feed-Forward

Speeding up the ADPLL’s settling speed:

a)fvco
@ et (S):. O s (S)= MOM (S)

Synthesizer Model . (9)

Synthesizer Model with
Feed-Forward Path

O e (S)

Assume that the frequency
IS changed not by the divide
ratio, but by changing the
reference frequency.

Other PLL Feed-Forward Papers:

Benyong Zhung und Phillip Allen, FEED-FORWARD COMPENSATED HIGH SWITCHING SPEED DIGITAL PHASE-LOCKED LOOP
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Direct Frequency Reference Feed-
Forwarding
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Finding the Feed-Forward Parameters

Finding the free running frequency Finding the DCO gain

Feed forward free
running frequency
compensation factor
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Perfect and Imperfect Reference Frequency
Step Compensation

The output of the ADP ut the feed-forward path
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With realistic Feed-Forward Path
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Win Chaivipas, Philipus Oh, and Akira Matsuzawa “Feed-Forward Compensation
Technique for All Digital Phase Locked Loop Based Synthesizers” Proc. ISCAS 06

A
Af; Output Expected Frequency Ko Output Expected Frequency

Frequency Multiplication
Factor

K peo DCO Gain
A
f ZJ R Input Frequency time step Kpco DCO Scaling Factor
R
F ( z ) Low-Pass Filter Transfer Function f R Reference Frequency

f . e DCO Offset frequency
free. DCO Free Running Frequency f prediction error

e,  DCO gain prediction error M Matsuzawa Lab. , fi

Tokyo Institute of Technology £ :52?




Simulation Results 1

ADPLL with no Feed-Forward ADPLL with Feed-Forward
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*System Results |nI Slgnlflcantly Faster Settling

*Overshoot becomes less dependent on damping factor and is almost eliminated
for good DCO gain prediction

Matsuzawa Lab i 3
Tokyo Institute of Technology i -“-U-- i




(4010B4) JUSWaAoIdwI 3ul|}32S

o

time with 4

M Matsuzawa Lab. , [
Tokyo Institute of Technology :i:f =&

Settling

Damping factor
All Digital Phase-Locked Loop Settling time and

improvement factor VS damping factor at 1%

DCO gain prediction error
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DCO gain estimation error (%)

All Digital Phase-Locked Loop Settling
time improvement VS DCO gain
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Simulation Results 2




Feed-forward does not affect stability

Assuming an arbitrary filter function
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Substituting into the transfer function for ADPLL system with and without feed-forward
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Example Second Order System

Let the loop filter transfer function be
alz-1)+ p

Flz) = z -1

Poles and Zeros of System without feed-forward
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Verilog-AMS Mode|
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Simulation Results
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Settling Speed improve with stability!
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Advantages and Challenges of Feed-
Forward Compensation

Advantages

O

(m

O

O

Feed-Forward Compensation does not affect the System’s stability as it does not
modify the loop’s bandwidth or change loop parameters.

Offset introduced into the system will be compensated for, even if the prediction is
bad it does not affect system stability, it only affects settling time

Feed-Forward can eliminate the system’s overshoot’'s dependence on damping factor
for a reasonable DCO gain estimation

Feed-Forward compensation’s settling improvement factor increases with damping
factor means faster settling improvement and stability can be improved
simultaneously

Challenges

O

O

The actual possible improvement factor is still unknown until a real prototype is
designed

Possibility to extend the feed-forward function from static to dynamic for increased
settling improvement is possible, with the possible trade-off of the need for careful
design as the stability may be compromised
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Questions?
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