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Motivation
Decreasing supply voltages make it increasingly 
difficult for analog circuits to work as they have 
in the past

All-Digital Phase-Locked Loop has recently been 
reduced to overcome the problem of low voltage 
for frequency synthesis

Fast-frequency switching techniques are 
necessary for frequency hopping systems, or fast 
switching between frequency channels in future 
wireless systems
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The Charge-Pumped based PLL VS 
All-Digital PLL
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TDC/FDC explanation
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All-Digital PLL Mathematical Model

1. A. Kajiwara and M. Nakagawa, “A New PLL Frequency Synthesizer with High Switching Speed,” IEEE Trans. Vehicular Technology, Vol. 41, pp. 407-413, Nov. 1992.
2. R. B. Staszewski and P. T. Balsar, “Phase-Domain All-Digital Phase-Locked Loop,” IEEE Trans. Circuits and Systems II, Vol. 52, pp. 159-163, Mar. 2005.

Continuous time approximation S-Domain model of the ADPLL
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System Level Model of the ADPLL
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Conventional PLL Speed-up Techniques
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Loop parameter adjustment is most common
• Adjustment of loop filter’s bandwidth
• Dynamic adjustment of loop gain by changing filter or charge-pump gain

Disadvantage
• Loop stability maybe compromised
• Difficult to design, designer must make sure the system is stable over 
all combinations of loop parameters 



Speeding up the ADPLL’s settling speed:

s
1)(srefω )(srefθ

F(s) )(sK vco

fvcoω
)(soutω

s
1)(soutθ

-

%N

)(se

s
1)(srefω )(srefθ

F(s) )(sKvco

fvcoω
)(soutω

s
1)(soutθ

-

G(s)

%N

)(se

Synthesizer Model
Synthesizer Model with 
Feed-Forward Path

Assume that the frequency 
is changed not by the divide 
ratio, but by changing the 
reference frequency.

Speeding up the PLL’s Settling speed Via 
Feed-Forward

Other PLL Feed-Forward Papers:
Benyong Zhung und Phillip Allen、FEED-FORWARD COMPENSATED HIGH SWITCHING SPEED DIGITAL PHASE-LOCKED LOOP 
FREQUENCY SYNTHESIZER、１９９９



Direct Frequency Reference Feed-
Forwarding
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Finding the Feed-Forward Parameters
Finding the free running frequency Finding the DCO gain

[4]  R. B. Staszewski, Dirk Leipold, and Poras T. Balasara “Just-In-Time Gain Estimation of an RF Digitally-Controlled Oscillator for Digital Direct Frequency Modulation,” IEEE Trans. Circuits and Systems II, 

Vol. 50, No.11, pp. 887-892, Nov. 2003
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Perfect and Imperfect Reference Frequency 
Step Compensation
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Simulation Results 1

ADPLL with no Feed-Forward ADPLL with Feed-Forward

•System Results in Significantly Faster Settling
•Overshoot becomes less dependent on damping factor and is almost eliminated 
for good DCO gain prediction
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Simulation Results 2

All Digital Phase-Locked Loop Settling 
time improvement VS DCO gain 
estimation error

All Digital Phase-Locked Loop Settling time and 
improvement factor VS damping factor at 1% 
DCO gain prediction error
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Feed-forward does not affect stability
Assuming an arbitrary filter function

Substituting into the transfer function for ADPLL system with and without feed-forward

System without feed-forward

System with feed-forward
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Example Second Order System
Let the loop filter transfer function be
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Verilog-AMS Model
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32i = 32 bit integer bus
32f = 32 bit fractional bus



Simulation Results
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Advantages and Challenges of Feed-
Forward Compensation

Advantages
Feed-Forward Compensation does not affect the System’s stability as it does not 
modify the loop’s bandwidth or change loop parameters.  
Offset introduced into the system will be compensated for, even if the prediction is 
bad it does not affect system stability, it only affects settling time
Feed-Forward can eliminate the system’s overshoot’s dependence on damping factor 
for a reasonable DCO gain estimation
Feed-Forward compensation’s settling improvement factor increases with damping 
factor means faster settling improvement and stability can be improved 
simultaneously

Challenges
The actual possible improvement factor is still unknown until a real prototype is 
designed
Possibility to extend the feed-forward function from static to dynamic for increased 
settling improvement is possible, with the possible trade-off of the need for careful 
design as the stability may be compromised



Questions?
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