Mixed signal SoC: A new technology driver in LSI industry

Akira Matsuzawa

Matsushita Electric Industrial Co., Ltd

(Tokyo Institute of Technology, after this April)

Contents

- Introduction
- Current electronics and mixed signal technology
- CMOS as an analog device
- Development strategy and design system for mixed signal SoC
- Issues of mixed signal SoC and solutions
- Summary

Current electronics and mixed signal technology

Image of current electronics

Digital consumer electronics and networking drive current electronics.

ISCAS A. Matsuzawa

Mixed signal technology :Digital networkings

Mixed signal technology enables high speed digital networking.

ISCAS A. Matsuzawa

Mixed signal tech. ;Digital read channel

Digital storage also needs high speed mixed signal technologies.

ISCAS A. Matsuzawa

Mixed signal SoC for DVD RAM system

This enables high readability for weak signal from DVD RAM pickup.

World fastest and highly integrated mixed signal CMOS SoC

0.18um- eDRAM

24M Tr 16Mb DRAM

500MHz Mixed Signal

Goto, et al., ISSCC 2001

Recent developed mixed signal CMOS LSIs

12b 20MHz

AFE for ADLS

Digital network 1394b (1GHz)

AFE (Analog Front End)

AFE for Digital Camera

12b 20MHz ADC+AGC

2GHz RF CMOS

Application area in mixed signal CMOS tech.

Almost all the products need mixed signal CMOS LSI tech.

Digital technology in real world

Progress in A/D converter; video-rate 10b ADC

ADC is a key f We have redu	for mixed signal to ced the cost and	echnology. power of ADC dr	astically;
1/ 2,000 for Pc	ower and 1/200,00	0 for the cost!	
CMOS	S technology attai	ned it. dullin	g past 20 years
1980	1982	1993	Now
Conventional product W	orld 1 st Monolithic	World lowest pow	er SoC Core
Board Level (Disc.+Bip) 20W \$ 8,000	Bipolar (3um) 2W \$ 800	CMOS (1.2um) 30mW \$ 2.00	CMOS (0.15um) 10mW \$0.04
Analog Devices Inc.	Dur developed.	Our developed.	Our developed.

Progress in high-speed ADC

High speed ADC has reduced its power and area down to be embedded.

Early stage mixed signal CMOS LSI for CE

Success of CMOS ADC and DAC enabled low cost mixed signal CMOS LSI. This also enabled low cost and low power digital portable AV products.

1993 Model: Portable VCR with digital image stabilizing 6b Video ADC **Digital Video filter** System block diagram Digital image stabilizing Analog imaging MCU MCU Digital RAN Motion DET. Memory CNT Y/C Process Field MCU Analog ROM AF motor **Digital auto focusing** Audio out Finder Y/C Audie Cylinder motor Video out Analog audio, video processing MCU **Digital servo** Capstan moter 8b low speed ADC;DAC 8b CPU

CMOS as analog device

CMOS as analog device

CMOS has many issues as analog device, but also has a variety of circuit techniques

	CMOS	Bipolar	Comment		
Switch action	++		Only CMOS can realize		
Low Input current	++		switched capacitor circuits		
High gm	-	+	CMOS is ¼ of Bip.		
Low Capacitance	+	-	This results in Cp issue		
f _T	+	+	Almost same		
Voltage mismatch		++	CMOS is 10x of Bip.		
1/f noise		++	CMOS is 10x to 100x of Bip.		
Low Sub. effect	-	+			
Offset cancel	++		CMOS has a variety of		
Analog calibration	++		to address the self issues		
Digital calibration	++				
Embed in CMOS	++				

GHz operation by CMOS

Cutoff frequency of MOS becomes higher than that of Bipolar. Over several GHz operations have attained in CMOS technology

ISCAS A. Matsuzawa

CMOS technology for over GHz networking

Digital consumer needs over GHz wire line networking. CMOS has attained 5Gbps data transfer.

World first 1394b transceiver For 1Gbps networking

Test chip for 5Gbps wire line

0.18um 4AL_CMOS

5Gbps Eye pattern

f_T: MOS vs. Bipolar

Even if f_T of MOS is same as that of Bipolar, f_T of MOS is easily lowered by parasitic capacitance. Because, gm of MOS is $\frac{1}{2}$ to $\frac{1}{4}$ of that of Bipolar at the same current.

MOS
$$f_T \equiv \frac{gm}{2\pi Cin}$$
Bipolar $gm \equiv \frac{Ids}{\left(\frac{V_{eff}}{2}\right)}$ $f_T \equiv \frac{gm}{2\pi Cin}$ $gm \equiv \frac{Ic}{U_T}$ $V_{eff \min} = 2nU_T$ n: 1.4 $U_T \equiv \frac{kT}{q} \approx 26mV$ Veff/2: 50-100mV
(actual ckt.) $gm_{CMOS} < \frac{1}{2}, \frac{1}{4}gm_{Bip}$ (Same operating current) $Cin_{CMOS} < \frac{1}{2}, \frac{1}{4}Cin_{Bip}$ (Same f_T)

Parasitic effect: CMOS CT filter

High frequency ckt. with scaled device is strongly affected from parasitic. Circuit optimization with layout and parasitic effect is needed.

ISCAS A. Matsuzawa

Transistor issue: V_T mismatch

Larger gate area is needed for small V_T mismatch. Scaling and proper channel structure can improve this.

ISCAS A. Matsuzawa

Development strategy and design system for mixed signal SoC

Full DVD system integration in 0.13um tech.

Advanced mixed signal SoC has been successfully developed.

ISCAS A. Matsuzawa

System: DVD player

Current electrical system is complicated and needs analog and memory.

Scaled CMOS technology

Current Scaled CMOS technology is very artistic.

Matsushita's 0.13um CMOS technology

Seven lattices

Transistor

100nm

Cu Interconnection

Development strategy and system

Product time slot is narrow and development cost is huge.

Conventional analog LSI needs 2 or 3 re-designs. This can not be accepted to mixed signal SoC

Advanced development strategy and design system must be established.

Strategy for the mixed signal SoC

- System design
 - **Digital calibration** for analog adjustment and unknown parameters.
 - System optimization to reduce analog area and increase robustness.
- System verification
 - Fast and accurate mixed signal system simulator with behavioral model to verify and optimize the mixed signal system.
 - Create the target performance for circuit blocks.
- Circuit design
 - Ultra fast and accurate circuit simulation for P.V.T and fluctuation analysis to verify the performance and robustness.
 - Circuit optimizer to find the sweet spot of the circuit.
 - Automated creation of analog behavioral model for system sim.
- Process and device development
 - Develop suitable **analog option device**
 - Early **analog parameter extraction** (mismatch, temp. and voltage chara.)
 - Monitor and control the analog parameters in Fab.

Design flow for mixed signal SoC

Design flow from System to layout with top down and bottom up process should be used for designing mixed signal SoC. Accurate and a variety of device parameters is an another key.

Multi-language simulation

Multi-language simulation is 56x faster than SPICE with same accuracy. This will contribute to shorter design TAT and higher design quality.

SPICE+Verilog D+Verilog A

Image: Description Option Time CPU Sp Blue line: Verilog-A Blue line: Verilog-A PLL Behavioral Lev (Verilog-A+SPICE) Image: Description Option Time (s) PLL Circuit Level Option Image: Description			P					
Brute fine: Verifog-A PLL Behavioral Lev (Verilog-A+SPICE) 9 min 545 Oral Jase env Nodel 2 hr 7939	Circuit, voin	1.060539	Red line: SPICE	Description	Option	Time	CPU Time (s)	Speed Ratio
Image: Spice Model (Spice) 2 hr 12 min 7939	Belavioral voin	1.00047	Blue line: verilog-A	PLL Behavioral Lev (Verilog-A+SPICE)		9 min	545	56
	Oral place over	Ø		PLL Circuit Level (Spice)	Model Opt.	2 hr 12 min	7939	3.8
Beside and the end of	Belavioral jakase error L	W		PLL Circuit Level (Spice)		8 hr 27 min	30414	1

Mixed signal system design

Needs mixed signal Simulation for total signal processing. Many parameters and processing methods should be optimized.

ISCAS A. Matsuzawa

System simulation

Perfection of the mixed signal system should be verified and optimized by system simulation.

ADC resolution effect

LSI design using behavioral language

Example: Analog Front End chip for ADSL system.

Hierarchical and behavioral system design

System should be described in behavioral language, hierarchically.

Virtual System test using Verilog AMS and Matlab

Fitting between behavioral and Spice

The combination of Verilog AMS and SPICE assures system perfection.

A. Matsuzawa

ISCAS

Unified mixed signal circuit simulator

New design system can increase design speed, 10x to 50x.

Controller for automated simulation

Simulation controller enables fast and automated simulation steps

ISCAS A. Matsuzawa

Issues of mixed signal SoC

V_{dd} and CMOS scaling limits in analog

Lowest analog operating voltage must be 1.2V -1.8V. Thus 0.18um – 0.13um must be a scaling limit for analog. This results in salutation of f_T and area reduction.

ISCAS A. Matsuzawa

Optimization in channel parameters

Larger gate length is needed for small mismatch and small noise circuit. However, this results in increase of cost and decrease of performance.

Cost up issue by analog & I/O

Cost of mixed A/D LSI will increase when using deep sub-micron device, due to the increase of cost of non-scalable analog and I/O parts.

Large analog on SoC must be unacceptable in near future.

Chip area

Chip cost

Solution 1: Scaled CMOS and use of digital

Use scaled CMOS and not accurate passives. Address the issues by M/S compensation and system optimization.

Example: Analog+ digital calibration tech.

Area and power are reduced drastically, by scaled CMOS and digital tech.

- Y. Cong and R. L. Geiger, Iowa state university, ISSCC 2003
 - 14b 100MS/s DAC
 - 1.5V, 17mW, 0.1mm², 0.13um
 - 0.5 LSB INL,

SFDR=82dB at 0.9MHz, 62dB at 42.5MHz

Solution 2: Advanced packaging technology

Some advanced packaging technologies will give the solution.

Analog: using not so much scaled technology. Digital: using scaled technology Connect with low parasitic cap. and inductance.

Chip On Chip technology

Same capacitance as on-chip interconnection. No interconnection inductance

Future step: Mixed signal egg.

Analog helps digital (digital network and storage...). Next step is digital must help analog.

Mixed signal egg (Analog yolk and white with digital shell)

Digital shell

Sustain the analog egg. Calibration and adjustment.

Analog yolk and white

Ultra-low power signal processing (Weak inversion) Ultra-high speed signal processing

But, very delicate and fancy

Summary

- The mixed signal (Analog+Digital) is essential for almost all the systems. Not analog only, not digital only.
- Effective modeling of analog parts and high speed concurrent simulation with digital is vital for design.
- CMOS is very powerful technology for analog, as well as digital, but scaling limitation is reaching.
- The collaboration between analog and digital, and advanced packaging technology will bring us effective solutions.