

Akira Matsuzawa

Tokyo Institute of Technology

July 8, 2014.

Background and Motivation

Issues

It becomes more difficult to obtain good analog IPs

- Insufficient design resources (Designers, Tools)
- Insufficient performance
- Expensive
- Longer development time
- Proposed solutions
 - Reduce # of analog IPs \rightarrow One IP for versatile uses
 - Scalable IPs
 - Reduce the parasitic effect due to layout
 - Respect regularity
 - Synthesizable IPs

July 8, 2014.

Scalable 12bit SAR ADC

for versatile uses

July 8, 2014.

Scalable ADC

Many ADCs to cover the almost all wireless communications.

ΤΟΚΊ

SNR can be increased by the reduction of BW, up to 84 dB. P_d should be minimized and can be reduced by the reduction of BW.

July 8, 2014.

CMOS Emerging Matsu

Matsuzawa & Okada Lab.

Dynamic comparator

Dynamic comparator doesn't consume any static power. Large noise was an issue, however improved by our proposed circuit using CMOS inter-stage amplifier.

M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov. 2008. Yusuke Asada, Kei Yoshihara, Tatsuya Urano, Masaya Miyahara, and Akira Matsuzawa, "A 6bit, 7mW, 250fJ, 700MS/s Subranging ADC," A-SSCC, 5-3, pp. 141-144, Taiwan, Taipei, Nov. 2009.

CMOS Emerging Matsu

5

ΤΟΚΥΟ

PursuingExcellence

Use of MOM capacitor

MOM capacitor uses the capacitance between the lateral interconnection. The capacitor density can be increased by technology scaling. Smaller occupied area (same C) can be expected by technology scaling. Furthermore, parasitic capacitance can be controlled.

July 8, 2014.

Intermitted operation by self-clocking

Successive comparison is started after the sampling period and ended at 12 conversions.

 P_d is proportional to the sampling frequency.

The leakage current can be blocked by using power gating.

ΓΠΚΥΠ ΓΙΞΙ

Pursuina Excellence

Scalable power dissipation

P_d is completely proportional to the sampling frequency. *Pursuing Excellence* Therefore an ultra-low power is possible at low speed operation. Further low power is possible by using low voltage operation.

Suitable for the versatile uses; wireless and sensor

8

ΤΟΚΥΟ

July 8, 2014.

Performance comparison

- Highest conversion rate: 70MSps
- Lowest voltage: 0.8V
- Lowest P_d: 2.2mW at 50MSps
- Smallest FoM: 28fJ
- Smallest area: 0.03mm²

12bit SAR ADCs

ΤΟΚΥΟ

Pursuing Excellence

	This work			[3]	[4]
Resolution (bit)	12			12	12
V _{DD} (V)	0.8	1	1.2	1.2	1.2
fsample (MHz)	30	50	70	45	50
Pd (mW)	0.8	2.2	4.6	3	4.2
SNDR (dB)	62	64	65	67	71
FoM (fJ) Nyq/DC	81/28	62/33	100/45	36/31	36/29
Technology (nm)	65			130	90
Occupied area(mm ²)		0.03		0.06	0.1

S. Lee, A. Matsuzawa, et al., SSDM 2013.

[3] W. Liu, P. Huang, Y. Chiu, ISSCC, pp. 380-381, Feb. 2010.

[4] T. Morie, et al., ISSCC, pp.272-273, Feb. 2013.

Performance scalable ADC

SNR can be increased up to 78 dB by reducing BW. ⁷⁴ Smallest P_d among ADCs for wireless communications.

84 dB will be attained by dither and DEM method. SNR_0 is 140 dB and it can be increased.

ΤΟΚ

Pursuing Excellence

Matsuzawa & Okada Lab.

July 8, 2014.

Layout-driven circuit design

and synthesizable analog IPs

July 8, 2014.

Conventional idea for analog IP design / 12

July 8, 2014.

CMOS Emerging Matsu

ΤΟΚΥΟ ΤΕΕΗ

Issue of conventional idea for analog design

A conventional idea of Place the components and Route them ^{Pursuing Excellence} causes parasitic components essentially and it results in performance degradation.

July 8, 2014.

CMOS Emerging Matsu

ΤΠΚΥΠ ΤΙΞΓ

Regular layout driven design

Ideal layout design

Pitch is aligned.

It minimizes parasitic component, wire length, delay and capacitance. Low power, high speed, small area, and high robustness can be realized.

July 8, 2014.

CMOS Emerging Matsu

15

Pursuing Excellence

ΤΟΚ

Synthesized layout

We can synthesize analog layout with SKILL language

Automated optimization Automated layout with SKILL language

ΤΟΚΥΟ ΤΕΕΗ

RDAC layout composed by skill language

July 8, 2014.

Design flow for analog IP synthesis

July 8, 2014.

CMOS Emerging Matsu

Matsuzawa & Okada Lab.

Circuit schematic and layout

18 TOKYOTIECH Pursuing Excellence

Logic gates should have regularity and launch the automated layout.

July 8, 2014.

Align the layout pitch

Logic gates, DFFs, switches, and resistors are aligned

Constant of the second s		(Conserved) () () a fact in a trian
	No	
		III PERSONAL PROPERTY IN THE PERSON OF A
HI - 7-21 H I - 21 H - 21 H - 21 H		
	and the second	

ΤΟΚ

PursuingExcellence

Circuits should be synthesized automatically. *Pursuing Excellence* Users can obtain analog IPs immediately with less money. No limitation for # of design requests

Summary

Issues

It becomes more difficult to obtain good analog IPs

Insufficient design resources, Insufficient performance
 Expensive, and Longer development time

Proposed solutions

- One analog IP core for versatile uses
 Ex: Scalable 12b SAR ADC for versatile use
- Regularity driven analog layout
 - Avoid wires between components by making wire component
 - Respect the regularity and pitch should be aligned
- Synthesize analog IPs with Skill language
- Propose new analog IP design method and business.

July 8, 2014.

