Lessons and Challenges for Future Mixed-Signal, RF, and Memory Circuits

Akira Matsuzawa

Tokyo Institute of Technology
Can we verify the analog circuits perfectly by circuit simulator?
Pitfalls of Analog IC Design

• Bugs of system level design
• Lack of well device models
• Wrong circuit simulation
• Effects of parasitic components
 – Not only in IC but also external components (package, PCB, etc.)
• Influences of EM fields
Ex.1 Hung-up: wrong system level design

50MS/s SAR ADC suddenly stopped after 1 hour from power-on. Error rate: 10^{-11} ← Can we simulate?

![Diagram of SAR ADC and asynchronous operation](image)

- **Comparator**
 - Comparator (Q)
 - S/H
 - DAC (V_{DAC})

- **Successive Approximation Register**
 - N bit
 - N cycle/conv.

- **Asynchronous operation**
 - V_{REF}
 - V_{DAC}
 - V_{in}
 - Code=1010

- **Flowchart**
 - START
 - R=1?
 - yes → $R=1$ ⇒ Ready
 - no → $R=0$ ⇒ Under Conversion
 - S/H ON
 - i=10
 - Q=1?
 - yes → Conversion is stopped.
 - no → $N=1$
 - $V_{DAC}=V_{DAC}-V_{REF}/2^i$
 - $i=i-1$
 - i=0?
 - yes → $R=0$
 - no → $N=0$
 - $V_{DAC}=V_{DAC}+V_{REF}/2^i$

- If asynchronous operation is stopped, ‘R’ cannot be '1'.
 → Conversion is stopped.
Sometimes circuits have two steady-states. Designers have to set an initial condition carefully.

CMOS oscillator with DC-cut LC tank

Conventional simulation

Actual power on
Ramped V_{DD}

$V_{DD}=0V$
$V_{DD}=1.0V$

V_{PN}
V_{VP}

V_{DD}

2014.06.12
Ex.3 Different result: Effect of inductance

If inductance is neglected, the smaller resistance is the better for fast settling. However, actual circuit contains inductive component; wires. If it is considered, Smaller resistance makes large ringing. The optimum resistance exists.
Mutual inductance between wires often forms feedback loop resulting in oscillation.
Small design margin: VT of transistor

VT of 40nm CMOS transistor is quite high of 0.6V. \((V_{GS}=0.8V)\)
PVT variation is 220-240mW.
Therefore it is quite difficult to realize 1V operation with 40nm CMOS.
Reality of analog& mixed signal LSI

• Circuit design
 – Almost no margin for low voltage design.
 – Can’t simulate every performance with every condition.
 – Calibration technique is needed, however it can’t guarantee the optimum performance.

• Layout design
 – Analog performance is strongly affected by layout design.
 – Package and board design affects the performance.
 – Not acceptable time for LPE simulation.

• Testing and embedding
 – No testing method for perfect verification.
 – Strongly affected by package or probe.
 – Affected by embedding to Mixed signal LSI.
Development procedure of M/S SoC

TEG test and rework are necessary before embedding to the M/S SoC.

Circuit design

Layout design

TEG Test & Rework

Embeding to the SoC

Simulation with package

5b, 2.3GSps ADC

BB SoC for 60GHz CMOS Transceiver

VLSI panel, A. Matsuzawa